如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點E,在BC上截取BF=AE,連接AF交CE于點G,連接DG交AC于點H,過點A作AN⊥BC,垂足為N,AN交CE于點M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的序號是           
①②③④.

試題分析:如解答圖所示:
結(jié)論①正確:證明△ACM≌△ABF即可;
結(jié)論②正確:由△ACM≌△ABF得∠2=∠4,進而得∠4+∠6=90°,即CE⊥AF;
結(jié)論③正確:證法一:利用四點共圓;證法二:利用三角形全等;
結(jié)論④正確:證法一:利用四點共圓;證法二:利用三角形全等.
試題解析:(1)結(jié)論①正確.理由如下:
∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,
∴∠6=∠CMN,又∵∠5=∠CMN,
∴∠5=∠6,
∴AM=AE=BF.

易知ADCN為正方形,△ABC為等腰直角三角形,
∴AB=AC.
在△ACM與△ABF中,
,
∴△ACM≌△ABF(SAS),
∴CM=AF;
(2)結(jié)論②正確.理由如下:
∵△ACM≌△ABF,
∴∠2=∠4,
∵∠2+∠6=90°,
∴∠4+∠6=90°,
∴CE⊥AF;
(3)結(jié)論③正確.理由如下:
證法一:∵CE⊥AF,
∴∠ADC+∠AGC=180°,
∴A、D、C、G四點共圓,
∴∠7=∠2,
∵∠2=∠4,
∴∠7=∠4,
又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
證法二:∵CE⊥AF,∠1=∠2,
∴△ACF為等腰三角形,AC=CF,點G為AF中點.
在Rt△ANF中,點G為斜邊AF中點,
∴NG=AG,
∴∠MNG=∠3,
∴∠DAG=∠CNG.
在△ADG與△NCG中,

∴△ADG≌△NCG(SAS),
∴∠7=∠1,
又∵∠1=∠2=∠4,
∴∠7=∠4,
又∵∠DAH=∠B=45°,
∴△ABF∽△DAH;
(4)結(jié)論④正確.理由如下:
證法一:∵A、D、C、G四點共圓,
∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,
∴∠DGC=∠DGA,即GD平分∠AGC.
證法二:∵AM=AE,CE⊥AF,
∴∠3=∠4,又∠2=∠4,∴∠3=∠2
則∠CGN=180°-∠1-90°-∠MNG=180°-∠1-90°-∠3=90°-∠1-∠2=45°.
∵△ADG≌△NCG,
∴∠DGA=∠CGN=45°=∠AGC,
∴GD平分∠AGC.
綜上所述,正確的結(jié)論是:①②③④,共4個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

.如果且對應(yīng)高之比為2:3,那么的面積之比是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,點D是BC中點,點E是AC中點,且AD⊥BC,BE⊥AC, BE,AD相交于點G,過點B作BF∥AC交AD的延長線于點F, DF="6."
(1) 求AE的長;
(2) 求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“黃金分割”在人類歷史上有著重要的作用和影響,世界上許多著名的建筑和藝術(shù)
品中都蘊涵著“黃金分割”.下面我們就用黃金分割來設(shè)計一把富有美感的紙扇:假設(shè)紙扇張開到最大時,扇形的面積與扇形所在圓的剩余部分的比值等于黃金比,請你來求一求紙扇張開的角度.(黃金比取0.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下圖是上海大眾汽車的標志圖案,圖中與它相似的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,順次連接邊長為1的正方形ABCD四邊的中點,得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點,得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點,得到四邊形A3B3C3D3,…,按此方法得到的四邊形A8B8C8D8的周長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC與△DEF的相似比為5:2,則△ABC與△DEF的周長的比為(    )
A.5:2B.2:5C.4:2D.25:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角坐標系中,已知點A(-2,0)、B(0,4)、C(0,3),過點C作直線交x軸于點D,使得以D、O、C為頂點的三角形與△AOB相似,這樣的直線最多可以作(   )
A.2條       B.3條           C.4條              D.6條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則的值是( )
A.B.C.-D.-

查看答案和解析>>

同步練習(xí)冊答案