【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)應怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?

【答案】
(1)解:設(shè)y=kx+b,由圖象可知,

,

解之,得: ,

∴y=﹣2x+60


(2)解:p=(x﹣10)y

=(x﹣10)(﹣2x+60)

=﹣2x2+80x﹣600,

∵a=﹣2<0,

∴p有最大值,

當x=﹣ =20時,p最大值=200.

即當銷售單價為20元/千克時,每天可獲得最大利潤200元


【解析】(1)由圖象過點(20,20)和(30,0),利用待定系數(shù)法求直線解析式;(2)每天利潤=每千克的利潤×銷售量.據(jù)此列出表達式,運用函數(shù)性質(zhì)解答.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】鐘樓是云南大學的標志性建筑之一,某校教學興趣小組要測量鐘樓的高度,如圖,他們在點A處測得鐘樓最高點C的仰角為45°,再往鐘樓方向前進至點B處測得最高點C的仰角為54°,AB=7m,根據(jù)這個興趣小組測得的數(shù)據(jù),計算鐘樓的高度CD.(tan36°≈0.73,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個樣本中共5個數(shù)據(jù)其中前四個數(shù)據(jù)的權(quán)數(shù)分別為0.2,0.3,0.2,0.1,則余下的一個數(shù)據(jù)對應的權(quán)數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一張三角形ABC紙片,點D、E分別是△ABC邊上兩點. 研究(1):如果沿直線DE折疊,使A點落在CE上,則∠BDA′與∠A的數(shù)量關(guān)系是
研究(2):如果折成圖2的形狀,猜想∠BDA′、∠CEA′和∠A的數(shù)量關(guān)系是
研究(3):如果折成圖3的形狀,猜想∠BDA′、∠CEA′和∠A的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式4ab2a22b2_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。

A. ﹣3(a+b)=﹣3a+3b B. 2(x+12y)=2x+12y

C. x3+2x5=3x8 D. x3+3x3=2x3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣(x+1)2+2的頂點坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若直線yx+n與直線ymx+6m、n為常數(shù),m0)相交于點P3,5),則關(guān)于x的不等式x+n+1mx+7的解集是(  )

A. x3B. x4C. x4D. x6

查看答案和解析>>

同步練習冊答案