【題目】在如圖所示的方格紙中,每個(gè)小正方形的邊長(zhǎng)為點(diǎn)均為格點(diǎn)(格點(diǎn)是指每個(gè)小正方形的頂點(diǎn))

標(biāo)出格點(diǎn)使線段;

標(biāo)出格點(diǎn),使邊上的高;

的距離為 ;

的面積.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(32;(45.

【解析】

1)過(guò)點(diǎn)C作AB的平行線,交于格點(diǎn),標(biāo)出格點(diǎn)D,即可;

2)延長(zhǎng)BA,交于格點(diǎn),標(biāo)出格點(diǎn)E,利用勾股定理逆定理易知CE⊥AE,則CE△ABCAB邊上的高;

3)根據(jù)網(wǎng)格即可得BAC的距離;

4)根據(jù)三角形面積公式即可求△ABC的面積.

解:如圖,

1)格點(diǎn)D(或D′)即為所求;

2)格點(diǎn)E即為所求;

, ,=

CEAE

3BAC的距離為BF的長(zhǎng)為2

故答案為2

4ABC的面積為:

ACBF=×5×2=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是O的直徑,BC是O的弦,半徑ODBC,垂足為E,若BC=,DE=3.

求:

1O的半徑;

2弦AC的長(zhǎng);

3陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成正方形零件PQMN,使正方形PQMN的邊QMBC上,其余兩個(gè)項(xiàng)點(diǎn)P,N分別在AB,AC上.求這個(gè)正方形零件PQMN面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BCDAB上的一點(diǎn),AECD于點(diǎn)E,BFCD于點(diǎn)F,若CE=BF,試判斷ACBC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解七年級(jí)學(xué)生體育測(cè)試成績(jī)情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)統(tǒng)計(jì)如下,其中右側(cè)扇形統(tǒng)計(jì)圖中的圓心角α36°,根據(jù)圖表中提供的信息,回答下列問(wèn)題:

體育成績(jī)統(tǒng)計(jì)表

體育成績(jī)(分)

人數(shù)(人)

百分比(%)

26

8

16

27

12

24

28

15

29

n

30

(1)求樣本容量及n的值;

(2)已知該校七年級(jí)共有500名學(xué)生,如果體育成績(jī)達(dá)28分以上為優(yōu)秀,請(qǐng)估計(jì)該校七年級(jí)學(xué)生體育成績(jī)達(dá)到優(yōu)秀的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地決策,自來(lái)水公司隨機(jī)抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問(wèn)題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補(bǔ)全頻數(shù)分直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來(lái)水公司將基本用水量定為每戶25噸,那么該地20萬(wàn)用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過(guò)AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問(wèn)在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到圖書(shū)館查閱資料,學(xué)校與圖書(shū)館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書(shū)館,圖中折線OABC和線段OD分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過(guò)的時(shí)間(分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象回答下列問(wèn)題:

1)小聰在圖書(shū)館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘.

2)請(qǐng)你求出小明離開(kāi)學(xué)校的路程(千米)與所經(jīng)過(guò)的時(shí)間(分鐘)之間的函數(shù)關(guān)系;

3)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】父親兩次將100斤糧食分給兄弟倆,第一次分給哥哥的糧食等于第二次分給弟弟的2倍,第二次分給哥哥的糧食是第一次分給弟弟的3倍,求兩次分糧食中,哥哥、弟弟各分到多少糧食?

查看答案和解析>>

同步練習(xí)冊(cè)答案