【題目】探究應(yīng)用:
(1)計(jì)算:___________;______________.
(2)上面的乘法計(jì)算結(jié)果很簡(jiǎn)潔,你發(fā)現(xiàn)了什么規(guī)律(公式)?用含字母的等式表示該公式為:_______________.
(3)下列各式能用第(2)題的公式計(jì)算的是( )
A. B.
C. D.
【答案】(1);(2);(3)C
【解析】
(1)根據(jù)多項(xiàng)式與多項(xiàng)式相乘的法則計(jì)算以后,合并同類項(xiàng)即可;
(2)根據(jù)上面兩題得出公式即可;
(3)根據(jù)歸納的公式的特點(diǎn)進(jìn)行判斷即可.
(1)(x+1)(x2-x+1)=x3-x2+x+x2-x+1=x3+1,
(2x+y)(4x2-2xy+y2)=8x3-4x2y+2xy2+4x2y-2xy2+y3=8x3+y3,
(2)(a+b)(a2-ab+b2)=a3+b3;
(3)由(2)可知選(C);
故答案為:(1)x3+1;8x3+y3;(2)(a+b)(a2-ab+b2)=a3+b3;(3)C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能又環(huán)保的油電混合動(dòng)力汽車,既可以用油做動(dòng)力行駛,也可以用電做動(dòng)力行駛,某品牌油電混合動(dòng)力汽車從甲地行駛到乙地,若完全用油做動(dòng)力行駛,則費(fèi)用為80元;若完全用電做動(dòng)力行駛,則費(fèi)用為30元,已知汽車行駛中每千米用油費(fèi)用比用電費(fèi)用多0.5元.
(1)求:汽車行駛中每千米用電費(fèi)用是多少元?甲、乙兩地的距離是多少千米?
(2)若汽車從甲地到乙地采用油電混合動(dòng)力行駛,且所需費(fèi)用不超過50元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過B,C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連接CM,將線段MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(t>0),請(qǐng)解答下列問題:
(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;
(2)①直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時(shí)的t的值;
②求點(diǎn)M運(yùn)動(dòng)的過程中線段CD長(zhǎng)度的最小值;
(3)在點(diǎn)M運(yùn)動(dòng)的過程中,在直線l上是否存在點(diǎn)P,使得△BDP是等邊三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)化簡(jiǎn);
(2)當(dāng)時(shí),求的值;
(3)若,的值是否存在,若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家還發(fā)現(xiàn):在一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。即如果一個(gè)直角三角形的兩條直角邊長(zhǎng)度分別是和,斜邊長(zhǎng)度是,那么。
(1)直接填空:如圖①,若a=3,b=4,則c= ;若,,則直角三角形的面積是 ______ 。
(2)觀察圖②,其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上,請(qǐng)利用幾何圖形的之間的面積關(guān)系,試說明。
(3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.
已知:如圖1,在Rt△ABC中,∠ABC=90°.
求作:矩形ABCD.
小明的作法如下:
如圖2,(1)分別以點(diǎn)A、C為圓心,大于AC同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E、F;
(2)作直線EF,直線EF交AC于點(diǎn)O;
(3)作射線BO,在BO上截取OD,使得OD=OB;
(4)連接AD,CD.
∴四邊形ABCD就是所求作的矩形.
老師說,“小明的作法正確.”
請(qǐng)回答,小明作圖的依據(jù)是:__________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形 ABCD 中,A(﹣1,0)、B(0,﹣2),頂點(diǎn) C、D 在雙曲線 y=(x>0)上,邊 AD 交 y 軸于點(diǎn) E,若點(diǎn) E 恰好是 AD 的中點(diǎn),則 k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)與x軸交于E(-2,0),與y軸交于點(diǎn)A.與x軸交于B(2,0),與y軸交于點(diǎn)D(0,-4).它們的圖象如圖所示,請(qǐng)依據(jù)圖象回答以下問題:
(1)a=
(2)確定的函數(shù)關(guān)系式
(3)求△ABC的面積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com