【題目】探究應(yīng)用:

1)計(jì)算:___________;______________

2)上面的乘法計(jì)算結(jié)果很簡(jiǎn)潔,你發(fā)現(xiàn)了什么規(guī)律(公式)?用含字母的等式表示該公式為:_______________

3)下列各式能用第(2)題的公式計(jì)算的是(

A B

C D

【答案】1;(2;(3C

【解析】

1)根據(jù)多項(xiàng)式與多項(xiàng)式相乘的法則計(jì)算以后,合并同類項(xiàng)即可;

2)根據(jù)上面兩題得出公式即可;

3)根據(jù)歸納的公式的特點(diǎn)進(jìn)行判斷即可.

1)(x+1)(x2-x+1=x3-x2+x+x2-x+1=x3+1,

2x+y)(4x2-2xy+y2=8x3-4x2y+2xy2+4x2y-2xy2+y3=8x3+y3

2)(a+b)(a2-ab+b2=a3+b3;

3)由(2)可知選(C);

故答案為:(1x3+18x3+y3;(2)(a+b)(a2-ab+b2=a3+b3;(3C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】節(jié)能又環(huán)保的油電混合動(dòng)力汽車,既可以用油做動(dòng)力行駛,也可以用電做動(dòng)力行駛,某品牌油電混合動(dòng)力汽車從甲地行駛到乙地,若完全用油做動(dòng)力行駛,則費(fèi)用為80元;若完全用電做動(dòng)力行駛,則費(fèi)用為30元,已知汽車行駛中每千米用油費(fèi)用比用電費(fèi)用多0.5元.

(1)求:汽車行駛中每千米用電費(fèi)用是多少元?甲、乙兩地的距離是多少千米?

(2)若汽車從甲地到乙地采用油電混合動(dòng)力行駛,且所需費(fèi)用不超過50元,則至少需要用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過B,C兩點(diǎn),點(diǎn)M從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),連接CM,將線段MC繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(t>0),請(qǐng)解答下列問題:

(1)求點(diǎn)A的坐標(biāo)與直線l的表達(dá)式;

(2)①直接寫出點(diǎn)D的坐標(biāo)(用含t的式子表示),并求點(diǎn)D落在直線l上時(shí)的t的值;

②求點(diǎn)M運(yùn)動(dòng)的過程中線段CD長(zhǎng)度的最小值;

(3)在點(diǎn)M運(yùn)動(dòng)的過程中,在直線l上是否存在點(diǎn)P,使得△BDP是等邊三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知

1)化簡(jiǎn)

2)當(dāng)時(shí),求的值;

3)若,的值是否存在,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,有一個(gè)內(nèi)角是直角的三角形是直角三角形,其中直角所在的兩條邊叫直角邊,直角所對(duì)的邊叫斜邊(如圖①所示).?dāng)?shù)學(xué)家還發(fā)現(xiàn):在一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方和等于斜邊長(zhǎng)的平方。即如果一個(gè)直角三角形的兩條直角邊長(zhǎng)度分別是,斜邊長(zhǎng)度是,那么

1直接填空:如圖①,若a3,b4,則c ;若,,則直角三角形的面積是 ______

2)觀察圖②,其中兩個(gè)相同的直角三角形邊AE、EB在一條直線上,請(qǐng)利用幾何圖形的之間的面積關(guān)系,試說明。

3)如圖③所示,折疊長(zhǎng)方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB8,BC10,利用上面的結(jié)論求EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是利用直角三角形作矩形尺規(guī)作圖的過程.

已知:如圖1,在RtABC中,∠ABC=90°.

求作:矩形ABCD.

小明的作法如下:

如圖2,(1)分別以點(diǎn)A、C為圓心,大于AC同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E、F;

(2)作直線EF,直線EFAC于點(diǎn)O;

(3)作射線BO,在BO上截取OD,使得OD=OB;

(4)連接AD,CD.

∴四邊形ABCD就是所求作的矩形.

老師說,小明的作法正確.

請(qǐng)回答,小明作圖的依據(jù)是:__________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形 ABCD ,A(﹣1,0)、B(0,﹣2),頂點(diǎn) C、D 在雙曲線 y=x>0), AD y 軸于點(diǎn) E,若點(diǎn) E 恰好是 AD 的中點(diǎn), k=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)x軸交于E-2,0),與y軸交于點(diǎn)Ax軸交于B(2,0),與y軸交于點(diǎn)D0,-4).它們的圖象如圖所示,請(qǐng)依據(jù)圖象回答以下問題:

1a  

2)確定的函數(shù)關(guān)系式

3)求ABC的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案