如圖,直線是線段的垂直平分線,為直線上的一點,

已知線段,則線段的長度為(      ).                                                      

A.6             B.5          C.4         D.3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=
1
2
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在拋物線上一點P,使S△PAB=
9
8
S△CAB?若存在,求出P點的坐標;若精英家教網(wǎng)不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,P是直線L外一點,A,B,C在直線L上,且PB⊥L,那么下列說法中不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知直線EA與x軸、y軸分別交于點E和點A(0,2),過直線EA上的兩點F、G分別作x軸的垂線段,垂足分別為M(m,0)和N(n,0),其中m<0,n>0.
(1)如果m=-4,n=1,試判斷△AMN的形狀;
(2)如果mn=-4,(1)中有關(guān)△AMN的形狀的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請說明理由;
(3)如圖2,題目中的條件不變,如果mn=-4,并且ON=4,求經(jīng)過M、A、N三點的拋物線所對應(yīng)的函數(shù)關(guān)系式;
(4)在(3)的條件下,如果拋物線的對稱軸l與線段AN交于點P,點Q是對稱軸上一動點,以點P、Q、N為頂點的三角形和以點M、A、N為頂點的三角形相似,求符合條件的點Q的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,AC是點A到直線BC的垂線段,則點B到AC的距離是線段
BC
的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設(shè)P點的橫坐標為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案