【題目】若(a﹣4)2+|b﹣6|=0,則以a、b為邊長的等腰三角形的周長是_____.
【答案】14或16
【解析】
先根據(jù)非負(fù)數(shù)的性質(zhì)得到a、b的長,再分為兩種情況:①當(dāng)腰是4,底邊是6時(shí),②當(dāng)腰是6,底邊是4時(shí),求出即可.
∵(a﹣4)2+|b﹣6|=0,
∴a﹣4=0,b﹣6=0,
∴a=4,b=6,
①當(dāng)腰是4,底邊是6時(shí),三邊長是4,4,6,此時(shí)符合三角形的三邊關(guān)系定理,
即等腰三角形的周長是4+4+6=14;
②當(dāng)腰是6,底邊是4時(shí),三邊長是6,6,4,此時(shí)符合三角形的三邊關(guān)系定理,
即等腰三角形的周長是6+6+4=16.
故答案為:14或16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、O、E在同一條直線上,∠AOB=40°,∠DOB=105°,OD平分∠COE.
(1)求∠AOC的度數(shù);
(2)請通過計(jì)算說明OC平分∠BOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張等邊三角形紙片沿各邊中點(diǎn)剪成4個(gè)小三角形,稱為第一次操作;然后將其中的一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到7個(gè)小三角形,稱為第二次操作;再將其中一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到10個(gè)小三角形,稱為第三次操作;……,根據(jù)以上操作,若要得到100個(gè)小三角形,則需要操作的次數(shù)是( )
A. 25 B. 33 C. 34 D. 50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB∥OA,∠B=∠A=100°,E,F在CB上,且滿足∠FOC=∠AOC,OE平分∠BOF.
(1)求∠EOC的度數(shù).
(2)若平行移動(dòng)AC,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)7-(-4)+(-5);
(2)12-(-18)+(-7)-15;
(3);
(4)-7.2-0.8-5.6+11.6;
(5);
(6)-(+2.7)-(-1.6)-(-2.7)+(+2.4);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com