【題目】如圖,在平面直角坐標系中,⊙P經(jīng)過y軸上一點C,與x軸分別相交于A、B兩點,連接BP并延長分別交⊙P、y軸于點D、E,連接DC并延長交x軸于點F.若點F的坐標為(﹣1,0),點D的坐標為(1,6).
(1)求證:CD=CF;
(2)判斷⊙P與y軸的位置關(guān)系,并說明理由;
(3)求直線BD的解析式.
【答案】(1)見解析;(2) ⊙P與y軸相切,理由見解析;(3) y=-x+
【解析】試題分析: (1)證△COF≌△CHD可得CD=CF;
(2)連接PC,先由CD=CF、PD=PB知PC∥BF,結(jié)合BF⊥y軸知PC⊥y軸,即可得出結(jié)論;
(3)連接AD,證BD=BF可得AD=OH=6、OA=DH=1,設(shè)BD=x,由BD2=AB2+AD2得x=10,從而知B(9,0),待定系數(shù)法求解可得.
試題解析:
(1)如圖,作DH⊥OE于點H,
∴∠DHC=∠FOC=90°,∠DCH=∠FCO,
∵D(1,6)、F(﹣1,0),
∴DH=OF=1,
在△COF和△CHD中,
∵,
∴△COF≌△CHD(AAS),
∴CD=CF;
(2)連接PC,
∵CD=CF、PD=PB,
∴PC為△BDF的中位線,
∴PC∥BF,
∵BF⊥y軸,
∴PC⊥y軸,
又PC為⊙P的半徑,
∴⊙P與y軸相切;
(3)如圖,連接AD,
由(2)知BF=2PC,
∵BD=2PC,
∴BD=BF,
∵BD是⊙P的直徑,
∴∠DAB=90°,
∴AD=OH=6,OA=DH=1,
設(shè)BD=x,
則AB=x﹣2,
由BD2=AB2+AD2得x2=(x﹣2)2+62,
解得:x=10,
∴OB=OA+AB=1+8=9,即B(9,0),
設(shè)直線BD的解析式為y=kx+b,
把B(9,0)、D(1,6)代入得,
解得:,
∴直線BD的解析式為y=-x+ .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去學(xué)校食堂就餐,經(jīng)常會在一個買菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等時間x(分)之間滿足反比例函數(shù)關(guān)系,如下表:
等待時間x | 1 | 2 | 5 | 10 | 20 |
舒適度指數(shù)y | 100 | 50 | 20 | 10 | 5 |
已知學(xué)生等待時間不超過30分鐘
(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若等待時間8分鐘時,求舒適度的值;
(3)舒適度指數(shù)不低于10時,同學(xué)才會感到舒適.請說明,作為食堂的管理員,讓每個在窗口買菜的同學(xué)最多等待多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯子AB斜靠在一豎直的墻上,梯子的底端A到墻根O的距離AO為2米,梯子的頂端B到地面的距離BO為6米,現(xiàn)將梯子的底端A向外移動到A′,使梯子的底端A′到墻根O的距離A′O等于3米,同時梯子的頂端B下降至B′.求梯子頂端下滑的距離BB′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多邊形切去一個角后,形成的另一個多邊形的內(nèi)角和為1 080°,那么原多邊形的邊數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com