【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點(diǎn)E、F,連結(jié)BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①;②△DFP△BPH;③; ④.其中正確的是______.(寫出所有正確結(jié)論的序號).
【答案】②③
【解析】
依據(jù)∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH,,判定△DPH∽△CPD,可得,即PD2=PHCP,再根據(jù)CP=CD,即可得出PD2=PHCD;根據(jù)三角形面積計算公式,結(jié)合圖形得到△BPD的面積=△BCP的面積+△CDP面積-△BCD的面積,即可得出
解:∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠BPC=60°,
∴△DFP∽△BPH,故②正確;
∴
故①不正確;
∵PC=DC,∠DCP=30°,
∴∠CDP=75°,
又∵∠DHP=∠DCH+∠CDH=75°,
∴∠DHP=∠CDP,而∠DPH=∠CPD,
∴△DPH∽△CPD,
∴ ,即PD2=PHCP,
又∵CP=CD,
∴PD2=PHCD,故③正確;
如圖,過P作PM⊥CD,PN⊥BC,
設(shè)正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°
故④錯誤;
故答案為:②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,軸,如圖1,,且.
(1)點(diǎn)坐標(biāo)為__________,點(diǎn)坐標(biāo)為__________;
(2)求過、、三點(diǎn)的拋物線表達(dá)式;
(3)如圖2,拋物線對稱軸與交于點(diǎn),現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),以每秒1個單位的速度在上向點(diǎn)運(yùn)動,另一點(diǎn)從點(diǎn)與點(diǎn)同時出發(fā),以每秒5個單位在拋物線對稱軸上運(yùn)動.當(dāng)點(diǎn)到達(dá)點(diǎn)時,點(diǎn)、同時停止運(yùn)動,問點(diǎn)、運(yùn)動到何處時,面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家衛(wèi)生健康委員會公布,截止4月2日全國疫情現(xiàn)存趨勢圖如下:
(1)結(jié)合圖象,小彤對全國疫情做出以下四個判斷:
①現(xiàn)存疑似病例與現(xiàn)存確診病例數(shù)量差距最大日期大約出現(xiàn)在2月上旬;
②疫情在3月30日已經(jīng)得到完全的控制;
③現(xiàn)存疑似人數(shù)大約在2月8日前后達(dá)到峰值;
④全國現(xiàn)存確診病例人數(shù)3月底增加趨緩.
你認(rèn)為判斷正確的有________.
(2)針對這次疫情,某校初三一班的同學(xué)以小組為單位組織了“抗戰(zhàn)疫情,我為湖北鼓勁”繪畫活動.通過網(wǎng)絡(luò)發(fā)往湖北,右圖是同學(xué)們的上交繪畫作品情況,結(jié)合統(tǒng)計圖,回答:________,________.
(3)全國各地都向湖北伸出援助之手,其中北京市派遣醫(yī)務(wù)人員前往較為嚴(yán)重的武漢和黃岡.請依據(jù)表格回答下列問題:
北京派遣至武漢、黃岡各醫(yī)院醫(yī)護(hù)人員對比表 | ||||||
武漢 | ||||||
5 | 7 | 9 | 12 | 11 | 8 | 19 |
20 | 7 | 7 | 3 | 1 | 20 | 13 |
黃岡 | ||||||
3 | 8 | 5 | 10 | 14 | 20 | |
4 | 2 | 9 | 18 | 11 | 15 | |
注:表格內(nèi)的數(shù)字代表派遣至每個醫(yī)院的醫(yī)護(hù)人員人數(shù) |
①派往武漢各醫(yī)院醫(yī)護(hù)人員的眾數(shù)是________人;
②派黃岡各醫(yī)院醫(yī)護(hù)人員的平均數(shù)約是________人(四舍五入取整數(shù));
③請你根據(jù)表格信息,判斷兩個地區(qū)哪里的疫情較為嚴(yán)重,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA和BC的平行線,兩線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若∠B=60°,BC=6,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某駐村扶貧小組實(shí)施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會,很多學(xué)校都開展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB、BC兩部分組成,AB、BC的長度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α為20°,BC與水平面的夾角β為45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420,tan20o=0.3640,cos20o=0.9400).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點(diǎn),與直線y=x﹣1交于A、B兩點(diǎn),直線AB與拋物線的對稱軸交于點(diǎn)E.
(1)求拋物線的解板式.
(2)點(diǎn)P在直線AB上方的拋物線上運(yùn)動,若△ABP的面積最大,求此時點(diǎn)P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點(diǎn)B、E、C、D為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價為50元,成本為25元.由于在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品,有污水排出,所以為了凈化環(huán)境,工廠設(shè)計兩種方案對污水進(jìn)行處理,并準(zhǔn)備實(shí)施.
方案甲:工廠將污水排到污水廠統(tǒng)一處理,每處理需付14元的排污費(fèi);
方案乙:工廠將污水進(jìn)行凈化處理后再排出,每處理污水所用原料費(fèi)為2元,且每月凈化設(shè)備的損耗費(fèi)為30000元.設(shè)工廠每月生產(chǎn)x件產(chǎn)品(x為正整數(shù),).
(1)根據(jù)題意填寫下表:
每月生產(chǎn)產(chǎn)品的數(shù)量/件 | 3500 | 4500 | 5500 | … |
方案甲處理污水的費(fèi)用/元 | 31500 | … | ||
方案乙處理污水的費(fèi)用/元 | 34500 | … |
(2)設(shè)工廠按方案甲處理污水時每月獲得的利潤為元,按方案乙處理污水時每月獲得的利潤為元,分別求,關(guān)于x的函數(shù)解析式;
(3)根據(jù)題意填空:
①若該工廠按方案甲處理污水時每月獲得的利潤和按方案乙處理污水時每月獲得利潤相同,則該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為_______件;
②若該工廠每月生產(chǎn)產(chǎn)品的數(shù)量為7500件時,則該工廠選用方案甲、方案乙中的方案_______處理污水時所獲得的利潤多;
③若該工廠每月獲得的利潤為81000元,則該工廠選用方案甲、方案乙中的方案________處理污水時生產(chǎn)產(chǎn)品的數(shù)量少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com