【題目】如圖,在△ABC中,D為AB的中點(diǎn),DE∥BC,交AC于點(diǎn)E,DE∥AC,交BC于點(diǎn)F.
(1)求證:DE=BF;
(2)連接EF,請(qǐng)你猜想線段EF和AB有何關(guān)系?并對(duì)你的猜想加以證明.
【答案】(1)見(jiàn)解析;(2)EF∥AB且 EF=AB,見(jiàn)解析
【解析】
試題分析:(1)利用平行線的性質(zhì)得到相等的角,證明△ADE≌△DBF,即可得到DE=BF.
(2)EF∥AB且 EF=AB,證明△DBF≌△FED,得到EF=BD=AB,∠BDF=∠DFE,所以EF∥AB.
(1)∵D為AB的中點(diǎn),
∴AD=DB,
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C
∵DF∥AC,
∴∠DFB=∠C,
∴∠AED=∠DFB,
在△ADE和△DBF中,
∴△ADE≌△DBF,
∴DE=BF.
(2)EF∥AB且 EF=AB,如圖,
∵DE∥BC,
∴∠EDF=∠DFB,
在△DBF和△FED中,
∴△DBF≌△FED
∴EF=BD=AB,∠BDF=∠DFE,
∴EF∥AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)團(tuán)委會(huì)為了解該校學(xué)生的課余活動(dòng)情況,采取抽樣的辦法,從閱讀、運(yùn)動(dòng)、娛樂(lè)、其它等四個(gè)方面調(diào)查了若干名學(xué)生的興趣愛(ài)好,并將調(diào)查結(jié)果繪制了如下的兩幅不完整的統(tǒng)計(jì)圖(如圖),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)這次抽樣中,一共調(diào)查了多少名學(xué)生?
(2)“其它”在扇形圖中所占的圓心角是多少度?
(3)若該校有2500名學(xué)生,你估計(jì)全?赡苡卸嗌倜麑W(xué)生愛(ài)好閱讀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上點(diǎn)A、點(diǎn)B對(duì)應(yīng)的數(shù)分別為、6.
、B兩點(diǎn)的距離是______;
當(dāng)時(shí),求出數(shù)軸上點(diǎn)C表示的有理數(shù);
一元一次方解應(yīng)用題:點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)E以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)F從原點(diǎn)出發(fā)沿?cái)?shù)軸運(yùn)動(dòng),點(diǎn)D、點(diǎn)E、點(diǎn)F同時(shí)出發(fā),t秒后點(diǎn)D、點(diǎn)E相距1個(gè)單位長(zhǎng)度,此時(shí)點(diǎn)D、點(diǎn)F重合,求出點(diǎn)F的速度及方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)把下列各整式填入相應(yīng)圈里 ab+c,2m,ax2+c,-ab2c,a, 0, -,y+2.
(2)把能用一副三角尺直接畫(huà)出(或利用其角的加減可畫(huà)出)的角的度數(shù)從左邊框內(nèi)挑出寫(xiě)入右邊框內(nèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明去文具用品商店給同學(xué)買(mǎi)某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標(biāo)價(jià)都是1.50元/支,但甲、乙兩商店的優(yōu)惠條件有所不同.甲商店:若購(gòu)買(mǎi)不超過(guò)10支,則按標(biāo)價(jià)付款;若一次性購(gòu)10支以上,則超過(guò)10支的部分按標(biāo)價(jià)的60%付款.乙商店:按標(biāo)價(jià)的80%付款.在水性筆的質(zhì)量等各種因素相同的條件下.
(1)設(shè)小明要購(gòu)買(mǎi)的該品牌水筆數(shù)是(>10)支,請(qǐng)用含的代數(shù)式分別表示在甲、乙兩個(gè)商店購(gòu)買(mǎi)該品牌水性筆的費(fèi)用.
(2)若小明要購(gòu)買(mǎi)該品牌筆30支,你認(rèn)為在甲、乙兩商店中,到哪個(gè)商店購(gòu)買(mǎi)比較省錢(qián)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長(zhǎng)為半徑畫(huà)圓心角為90°的扇形OEF,弧EF經(jīng)過(guò)點(diǎn)C,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)分別為A(-2,2),B(0,5),C(0,2).
(1)畫(huà)△,使它與△ABC關(guān)于點(diǎn)C成中心對(duì)稱;
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),畫(huà)出平移后對(duì)應(yīng)的;
(3)若將繞某一點(diǎn)旋轉(zhuǎn)可得到,則旋轉(zhuǎn)中心的坐標(biāo)為 _____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在山腳下的A處測(cè)得山頂N的仰角為45°,此時(shí),他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對(duì)著山頂前行110米到達(dá)B處,測(cè)得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com