精英家教網 > 初中數學 > 題目詳情

【題目】如圖,的直徑,上的點,若,,若平分,則長為(

A.10B.7C.D.

【答案】D

【解析】

DFCA,垂足FCA的延長線上,作DGCB于點G,連接DA,DB.由RtAFDRtBGDHL),推出AF=BG,由RtCDFRtCDGHL),推出CF=CG,由CDF是等腰直角三角形,得CD=CF,求出CF即可解決問題.

DFCA,垂足FCA的延長線上,作DGCB于點G,連接DA,DB

∵∠AFD=BGD=90°,

RtADFRtBDG,

RtAFDRtBGDHL),

AF=BG

同理:RtCDFRtCDGHL),

CF=CG

AB是直徑,

∴∠ACB=90°,

AC=6BC=8,

AB=

6+AF=8-AF,

AF=1

CF=7,

CD平分∠ACB

∴∠ACD=45°,

∵△CDF是等腰直角三角形,

CD=CF=7

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在RtGMN中,∠M90°,PMN的中點

1)將線段MP繞著點M逆時針旋轉60°得到線段MQ,點P的對應點為Q,若點Q剛好落在GN上,

①在圖1中畫出示意圖;

②試問:以線段MQ為直徑的圓是否與GN相切?請說明理由;

2)如圖2,用直尺和圓規(guī)在GN邊上求作點Q,使得∠GQM=∠PQN.(保留作圖痕跡,不要求寫作法)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在ABC中,點D、點E分別在邊AB、AC上,且DE // BC,BE平分∠ABC

1)求證:BD=DE;

2)若AB=10,AD=4,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知將拋物線yx21沿x軸向上翻折與所得拋物線圍成一個封閉區(qū)域(包括邊界),在這個區(qū)域內有5個整點(點M滿足橫、縱坐標都為整數,則把點M叫做“整點”),它們分別是(10),(﹣10),(0,0),(0,1),(0,﹣1).現(xiàn)將拋物線yax+12+2a0)沿x軸向下翻折,所得拋物線與原拋物線所圍成的封閉區(qū)域內(包括邊界)恰有11個整點,則a的取值范圍是( 。

A.1a<﹣B.a<﹣1C.a<﹣D.1a<﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司對自家辦公大樓一塊米的正方形墻面進行了如圖所示的設計裝修(四周陰影部分是八個全等的矩形,用材料甲裝修;中心區(qū)是正方形,用材料乙裝修). 兩種材料的成本如下表:

材料

價格(元/2

550

500

設矩形的較短邊的長為米,裝修材料的總費用為.

1)計算中心區(qū)的邊的長(用含的代數式表示);

2)求關于的函數解析式;

3)當中心區(qū)的邊長不小于2米時,預備材料的購買資金32000元夠用嗎?請利用函數的增減性來說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC是⊙O的切線,連接AC與⊙O交于點 D.取BC的中點E,連接DE,并連接OE交⊙O于點F.連接AFBC于點G,連接BDAG于點H

1)若EF1,BE,求∠EOB的度數;

2)求證:DE為⊙O的切線;

3)求證:點F為線段HG的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一塊長30cm,寬12cm的矩形鐵皮,

1)如圖1,在鐵皮的四角各切去一個同樣的正方形,然后將四周突出部分折起,就能制作成一個底面積為144cm2的無蓋方盒,如果設切去的正方形的邊長為xcm,則可列方程為   

2)由于實際需要,計劃制作一個有蓋的長方體盒子,為了合理使用材料,某學生設計了如圖2的裁剪方案,空白部分為裁剪下來的邊角料,其中左側兩個空白部分為正方形,問能否折出底面積為104cm2的有蓋盒子(盒蓋與盒底的大小形狀完全相同)?如果能,請求出盒子的體積;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線yax2bxc上部分點的橫坐標x,縱坐標y 的對應值如表所示:

給出下列說法:①拋物線與y軸的交點為(0,6) ②拋物線的對稱軸是在y軸的右側;③拋物線一定經過點(30); ④在對稱軸左側,yx增大而減。畯谋碇锌芍,下列說法正確的個數有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BD是⊙O的弦,延長BDC,使DC=BD,連接AC,過點DDEAC,垂足為E

1)求證:AB=AC;

2)求證:DE是⊙O的切線;

3)若⊙O的半徑為6,∠BAC=60°,則DE=________

查看答案和解析>>

同步練習冊答案