【題目】在平面直角坐標系中,OA4,OC8,四邊形ABCO是平行四邊形.

1)求點B的坐標及四邊形ABCO的面積;

2)若點P從點C2單位長度/秒的速度沿CO方向移動,同時點Q從點O1單位長度/秒的速度沿OA方向移動,設移動的時間為t秒,△AQB△BPC的面積分別記為,,四邊形QBPO的面積是否發(fā)生變化,若不變,求出并證明你的結(jié)論,若變化,求出變化的范圍.

3)在(2)的條件下,是否存在某個時同,使,若存在,求出t的值,若不存在,試說明理由;

【答案】1)點B的坐標為(8,4),四邊形ABCO的面積32;(2)四邊形QBPO的面積不發(fā)生變化,面積為定值16,證明過程見解析;(3)存在t的值,此時

【解析】

1)先證四邊形ABCO是矩形,進而可根據(jù)OA4OC8求得答案;

2)由題意可知OQt,CP2t,進而可用含t的代數(shù)式表示SABQSBCP,進而可根據(jù) S四邊形QBPOS矩形ABCO SABQ SBCP32(164t)4t,化簡即可得到答案;

3)由(2)可知:SABQ164t,S四邊形QBPO16,再結(jié)合即可求得t的值.

解:(1)∵四邊形ABCO是平行四邊形,∠AOC90°

四邊形ABCO是矩形,

∵OA4,OC8

∴點B的坐標為(8,4),S矩形ABCOOA·OC8×432,

2)∵四邊形ABCO是矩形,

ABOC8,BCOA4,

由題意可知:OQtCP2t,

AQOAOQ4t,

∴SABQAB·AQ×8(4t)164t,

SBCPBC·CP×4×2t4t,

S四邊形QBPOS矩形ABCOSABQSBCP

32(164t)4t

3216+4t4t

16,

∴四邊形QBPO的面積不變,面積為16;

3)由(2)可知:SABQ164tS四邊形QBPO16,

,

解得,

∴存在t的值使得,此時

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠C=90°,∠A=30°.

1)用直尺和圓規(guī)作AB的垂直平分線,分別交AC、AB于點ED(保留作圖痕跡,不寫作法)

2)猜想ACCE之間的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級兩個班,各選派10名學生參加學校舉行的“漢字聽寫”大賽預賽,各參賽選手的成績?nèi)缦拢▎挝唬悍郑?/span>
A班:88,91,92,93,93,93,94,98,98,100
B班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下:

班級

最高分

平均分

中位數(shù)

眾數(shù)

方差

A班

100

a

93

93

c

B班

99

95

b

93

8.4


(1)求表中a、bc的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說:“最高分在A班,A班的成績比B班好”,但也有人說B班的成績要好,請給出兩條支持B班成績好的理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù) 的圖像記為 ,其頂點為 ,二次函數(shù) 的圖像記為 ,其頂點為 ,且滿足點 上,點 上,則稱這兩個二次函數(shù)互為“伴侶二次函數(shù)”.

(1)寫出二次函數(shù) 的一個“伴侶二次函數(shù)”;
(2)設二次函數(shù) 軸的交點為 ,求以點 為頂點的二次函數(shù) 的“伴侶二次函數(shù)”;
(3)若二次函數(shù) 與其“伴侶二次函數(shù)”的頂點不重合,試求該“伴侶二次函數(shù)”的二次項系數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點P是線段AD上一動點,OBD的中點,PO的延長線交BC于點Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向點D運動(不與點D重合),設點P運動時間為t秒,請用t表示PD的長;并求當t為何值時,四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重慶八中的老師工作很忙,但初一年級很多數(shù)學老師仍然堅持鍛煉身體,比如張老師就經(jīng)常堅持飯后走一走.某天晚飯后他從學校慢步到附近的中央公園,在公園里休息了一會后,因?qū)W校有事,快步趕回學校.下面能反映當天張老師離學校的距離y與時間x的關系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù) ,當 時, 的增大而增大;當 時, 的增大而減小,當 時, 的值為( )
A.–1
B.– 9
C.1
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關系?請說明理由;

(3)設AEm,

①△AGH的面積S有變化嗎?如果變化.請求出Sm的函數(shù)關系式;如果不變化,請求出定值.

②請直接寫出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(  )

A. a6÷2a22a3 B. (﹣ xy32=﹣x2y5

C. (﹣3a2(﹣2ab2)=6a3b2 D. (﹣50=﹣5

查看答案和解析>>

同步練習冊答案