精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,分別沿矩形紙片ABCD和正方形EFGH紙片的對角線AC,EG剪開,拼成如圖2所示的平行四邊形KLMN,若中間空白部分恰好是正方形OPQR

1)若AB=m,BC=n,用含m、n的代數式表示正方形EFGH的邊長;

2)若正方形EFGH的面積為25,求平行四邊形KLMN的面積;

3)平行四邊形KLMN是否能為菱形?請說明理由.

【答案】1;(250;(3)不能,理由見解析.

【解析】

1)設正方形的邊長為,則:,,根據四邊形EFGH是正方形,得到,即有,,利用可以得到結果;

2)設正方形的邊長為,根據正方形面積為25,可得,,據此可得平行四邊形KLMN的面積.

3)利用反證法,假設是菱形,則,正方形的邊長為,可求出m=n,則小正方形ROPQ邊長為0,與題目描述相矛盾,所以假設不成立,不是菱形.

1)設正方形的邊長為,

則:,,、

四邊形EFGH是正方形,

,即有

,

2)設正方形的邊長為,

正方形面積為25,

正方形邊長為5,

,,

∴平行四邊形KLMN的面積

3)結論:不能.

證明:假設是菱形,則,正方形的邊長為,

于是有,

,即,則m=n,

則小正方形ROPQ邊長為0,與題目描述相矛盾.所以假設不成立,不是菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為提高市民的環(huán)保意識,倡導節(jié)能減排,綠色出行,某市計劃在城區(qū)投放一批共享單車這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.

(1)今年年初,共享單車試點投放在某市中心城區(qū)正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?

(2)試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區(qū)全面鋪開.按照試點投放中A,B兩車型的數量比進行投放,且投資總價值不低于184萬元.請問城區(qū)10萬人口平均每100人至少享有A型車與B型車各多少輛?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標有數字0和-2;乙袋中有3個完全相同的小球,分別標有數字-201,小明從甲袋中隨機取出1個小球,記錄標有的數字為x,再從乙袋中隨機取出1個小球,記錄標有的數字為y,這樣確定了點Q的坐標(x,y)

1寫出點Q所有可能的坐標;

2求點Qx軸上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°AB4,AC3,點D,E分別是ABAC的中點,點G,FBC邊上(均不與端點重合)DGEF.將△BDG繞點D順時針旋轉180°,將△CEF繞點E逆時針旋轉180°,拼成四邊形MGFN,則四邊形MGFN周長l的取值范圍是___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF

(1)繼續(xù)旋轉三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由;

(2)再次旋轉三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數量關系;

(3)連EF,若DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速度繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地,(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程y(千米)與所用時間x(小時)之間的函數圖象如圖.快車到達甲地時,慢車距離甲地__米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖直線Lx軸、y軸分別交于點B、A兩點,且AB兩點的坐標分別為A0,3),B(-4,0).

1)請求出直線L的函數解析式;

2)點P在坐標軸上,且△ABP的面積為12,求點P的坐標;

3)點C為直線AB上一個動點,是否存在使點Cx軸的距離為1.5若存在請直接寫出該點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點CD分別在邊OA、OB上的點.連接ADBC,點HBC中點,連接OH

1)如圖1,求證:OHAD,OHAD;

2)將COD繞點O旋轉到圖2所示位置時,⑴中結論是否仍成立?若成立,證明你的結論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】操作題

1)如圖①所示是一個長為2a,寬為2b的矩形,若把此圖沿圖中虛線用剪刀均分為四塊小長方形,然后按圖②的形狀拼成一個正方形,請問:這兩個圖形的 不變.圖②中陰影部分的面積用含a、b的代數式表示為_________________

2)由(1)的探索中,可得到的結論是:在周長一定的矩形中,___________時,面積最大;

3)若一矩形的周長為36 cm,則當邊長為多少時,該圖形的面積最大?最大面積是多少?

查看答案和解析>>

同步練習冊答案