解方程:
(1)
2
x
=
5
x+1

(2)
1-x
x-2
=
1
2-x
-3
分析:(1)觀察可得最簡(jiǎn)公分母是x(x+1),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程:5x=2x+2求解.
(2)觀察可得最簡(jiǎn)公分母是(x-2),方程兩邊乘最簡(jiǎn)公分母,可以把分式方程轉(zhuǎn)化為整式方程:1-x=-1-3(x-2)求解.注意分式方程需檢驗(yàn).
解答:解:(1)方程兩邊同乘以x(x+1)得:5x=2x+2,
解得:x=
2
3
.…(4分)
檢驗(yàn):當(dāng)x=
2
3
時(shí),x(x+1)≠0,則x=
2
3
是原方程的解.
故原分式方程的解為:x=
2
3
.…(5分)

(2)方程的兩邊同乘(x-2)得:1-x=-1-3(x-2),
解得:x=2.…(4分)
檢驗(yàn):當(dāng)x=2時(shí),x-2=0,即x=2不是原方程的解,
故原方程無(wú)解.…(5分)
點(diǎn)評(píng):此題考查了分式方程的求解方法.此題比較簡(jiǎn)單,注意(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗(yàn)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
x
x+1
-
x+2
x-2
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程
1
x2+11x-8
+
1
x2+2x-8
+
1
x2-13x-8
=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:-22-
12
+|1-4sin60°|+(π-
22
7
)0

(2)解方程:
x+1
x-1
+
2
x+2
=1

(3)解不等式組
1-2(x-1)<0①
x-1
3
+
1
2
<x②
并將其解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程:
4x
x2-4
=1+
2
x-2
-
1
x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案