【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣4,4),C(﹣1,﹣1).
(1)在圖1中畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;
(2)直接寫出△A1B1C1的面積;
(3)在圖2中y軸上找出點(diǎn)P,使PB+PC的值最小(保留作圖痕跡).
【答案】(1)詳見解析;(2)7;(3)詳見解析.
【解析】
(1)依據(jù)軸對稱的性質(zhì),即可得到△ABC關(guān)于y軸對稱的圖形△A1B1C1;
(2)依據(jù)割補(bǔ)法進(jìn)行計(jì)算,即可得到△A1B1C1的面積;
(3)連接C1B,交y軸于點(diǎn)P,連接PC,依據(jù)兩點(diǎn)之間,線段最短,即可得到PB+PC的值最小.
解:(1)如圖1所示,△A1B1C1即為所求;
(2)△A1B1C1的面積為:4×5﹣×2×4﹣×1×3﹣×3×5=20﹣4﹣1.5﹣7.5=7;
(3)如圖2,連接C1B,交y軸于點(diǎn)P,連接PC,則PB+PC的值最小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx交x軸的負(fù)半軸于點(diǎn)A.點(diǎn)B是y軸正半軸上一點(diǎn),點(diǎn)A關(guān)于點(diǎn)B的對稱點(diǎn)A′恰好落在拋物線上.過點(diǎn)A′作x軸的平行線交拋物線于另一點(diǎn)C.若點(diǎn)A′的橫坐標(biāo)為1,則A′C的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,進(jìn)行如下操作:①分別以點(diǎn)A和點(diǎn)C為圓心,以大于的長為半徑作弧,兩弧分別相交于點(diǎn)M,N;②作直線MN,交線段AC于點(diǎn)D;③連接BD.則下列結(jié)論正確的是( )
A.BD平分∠ABCB.BD⊥ACC.AD=CDD.△ABD≌△CBD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形(用陰影表示).
(1)在圖(a)中,畫一個(gè)不含直角的三角形,使它的三邊長都是有理數(shù);
(2)在圖(b)中,畫一個(gè)直角三角形,使它的斜邊長為;
(3)在圖(c)中,畫一個(gè)直角三角形,使它的斜邊長為5,直角邊長都是無理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點(diǎn)A、點(diǎn)B,與X軸交于點(diǎn)C,其中點(diǎn)A(﹣1,3)和點(diǎn)B(﹣3,n).
(1)填空:m= ,n= .
(2)求一次函數(shù)的解析式和△AOB的面積.
(3)根據(jù)圖象回答:當(dāng)x為何值時(shí),kx+b≥(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰的三邊分別為、、,其中,若關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根,則的周長是( )
A. 9 B. 12 C. 9或12 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,1),C(﹣3,2),D(﹣1,2).
(1)在圖中畫出四邊形ABCD,并求出四邊形ABCD的面積;
(2)在圖中畫出四邊形ABCD關(guān)于x軸的對稱圖形A1B1C1D1,并分別寫出點(diǎn)A、C的對應(yīng)點(diǎn)A1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按圖1擺放,點(diǎn)D在BC邊的中點(diǎn)上,點(diǎn)A在DE上.
(1)填空:AB與EF的位置關(guān)系是 ;
(2)△DEF繞點(diǎn)D按順時(shí)針方向轉(zhuǎn)動(dòng)至圖2所示位置時(shí),DF,DE分別交AB,AC于點(diǎn)P,Q,求證:∠BPD+∠DQC=180°;
(3)如圖2,在△DEF繞點(diǎn)D按順時(shí)針方向轉(zhuǎn)動(dòng)過程中,始終點(diǎn)P不到達(dá)A點(diǎn),△ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1與S2之間是否存在不變的數(shù)量關(guān)系?若存在,請寫出它們之間的數(shù)量關(guān)系并證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線()與直線平行,且與直線交于點(diǎn).
(1)求直線的函數(shù)表達(dá)式;
(2)、分別是直線、上兩點(diǎn),點(diǎn)的橫坐標(biāo)為,且軸,若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com