【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為﹣3和1;④當x<1時,y<0.其中正確的命題是( 。
A.②③B.①③C.①②D.①③④
【答案】B
【解析】
利用x=1時,y=0可對①進行判斷;利用對稱軸方程可對②進行判斷;利用對稱性確定拋物線與x軸的另一個交點坐標為(-3,0),則根據(jù)拋物線與x軸的交點問題可對③進行判斷;利用拋物線在x軸下方對應的自變量的范圍可對④進行判斷.
∵x=1時,y=0,
∴a+b+c=0,所以①正確;
∵拋物線的對稱軸為直線x=﹣=﹣1,
∴b=2a,所以②錯誤;
∵拋物線與x軸的一個交點坐標為(1,0),
而拋物線的對稱軸為直線x=﹣1,
∴拋物線與x軸的另一個交點坐標為(﹣3,0),
∴方程ax2+bx+c=0的兩根分別為﹣3和1,所以③正確;
當﹣3<x<1時,y<0,所以④錯誤.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:今年7月20日豬肉價格比今年年初上漲了60%,某市民今年7月20日在某超市購買1千克豬肉花了80元錢.
(1)問:今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克65元的豬肉,按7月20日價格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy(如圖)中,拋物線y=ax2+bx+2經(jīng)過點A(4,0)、B(2,2),與y軸的交點為C.
(1)試求這個拋物線的表達式;
(2)如果這個拋物線的頂點為M,求△AMC的面積;
(3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE=45°,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每次旋轉(zhuǎn)都以圖中的A、B、C、D、E、F中不同的點為旋轉(zhuǎn)中心,旋轉(zhuǎn)角度為k90°(k為整數(shù)),現(xiàn)在要將左邊的陰影四邊形正好通過n次旋轉(zhuǎn)得到右邊的陰影四邊形,則n的值可以是( 。
A.n=1可以,n=2,3不可B.n=2可以,n=1,3不可
C.n=1,2可以,n=3不可D.n=1,2,3均可
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+5x+2019,有一組平行直線與該函數(shù)的相交情況如下:
y1=2x+1與之交于A1(x1,y1)、B1(α1,β1),
y2=2x+2與之交于A2(x2,y2)、B1(α2,β2),
y3=2x+3與之交于A1(x3,y3)、B1(α3,β3),
……
yn=2x+n與之交于An(xn,yn)、Bn(αn,βn),
(1)求x1+α1與x2+α2的值;
(2)求整數(shù)n的最大值;
(3)求(x1+x1+x3+…+xn)+(α1+α2+α3+.…+αn)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=30°,AB=10,以AB為直徑的⊙O交BC于點D,交AC于點E,連接DE,過點B作BP平行于DE,交⊙O于點P,連接CP、OP.
(1)求證:點D為BC的中點;
(2)求AP的長度;
(3)求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l切⊙O于點A,B為⊙O上一點,過點B作BC⊥l,垂足為點C,連接AB、OB.
(1)求證:∠ABC=∠ABO;
(2)若AB=,AC=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:
x | … | ﹣3 |
| ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | 3 |
| m | ﹣1 | 0 | ﹣1 | 0 |
| 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應的方程x2﹣2|x|=0有 個實數(shù)根;
②方程x2﹣2|x|=有 個實數(shù)根;
③關于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com