【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
【答案】解:(1)證明:∵點O為AB的中點,連接DO并延長到點E,使OE=OD,
∴四邊形AEBD是平行四邊形。
∵AB=AC,AD是△ABC的角平分線,∴AD⊥BC。
∴∠ADB=90°。
∴平行四邊形AEBD是矩形。
(2)當∠BAC=90°時,矩形AEBD是正方形。理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分線,∴AD=BD=CD。
∵由(1)得四邊形AEBD是矩形,∴矩形AEBD是正方形。
【解析】
試題(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進而由等腰三角形的性質得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性質得出AD=BD=CD,進而利用正方形的判定得出即可.
(1)證明:∵點O為AB的中點,連接DO并延長到點E,使OE=OD,
∴四邊形AEBD是平行四邊形,
∵AB=AC,AD是∠BAC的角平分線,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四邊形AEBD是矩形;
(2)當∠BAC=90°時,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分線,
∴AD=BD=CD,
∵由(1)得四邊形AEBD是矩形,
∴矩形AEBD是正方形.
科目:初中數學 來源: 題型:
【題目】觀察下列多面體,并把下表補充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點數 | 6 | 10 | 12 | |
棱數 | 9 | 12 | ||
面數 | 5 | 8 |
觀察上表中的結果,你能發(fā)現(xiàn)、、之間有什么關系嗎?請寫出關系式
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,CD是⊙O的弦,AB是⊙O的直徑,且CD//AB,連接AC,AD,OD,其中AC=CD,過點B的切線交CD的延長線于E.
(1)求證:DA平分∠CDO;
(2)若AB=12,求圖中陰影部分圖形的周長(結果精確到1,參考數據:π=3.1, =1.4, =1.7).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.請在圖(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點必須與方格紙中的小正方形頂點重合.
(1)畫一個底邊為4,面積為8的等腰三角形;
(2)畫一個面積為10的等腰直角三角形;
(3)畫一個面積為12的平行四邊形。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y= 相交于A(﹣1,2),B(2,b)兩點,與y軸相交于點C.
(1)求m,n的值;
(2)若點D與點C關于x軸對稱,求△ABD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+6x+c(a≠0)交y軸于A點,交x軸于B、C兩點(點B在點C的左側),已知A點坐標為(0,﹣5),點B的坐標為(1,0).
(1)求此拋物線的解析式及定點坐標;
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸與⊙C的位置關系,并說明理由;
(3)在拋物線上是否存在一點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E、F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC等于( )
A. 45° B. 35° C. 55° D. 50°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com