【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)?jiān)趫D(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合.

(1)畫一個(gè)底邊為4,面積為8的等腰三角形;

(2)畫一個(gè)面積為10的等腰直角三角形;

(3)畫一個(gè)面積為12的平行四邊形。

【答案】如圖所示:

【解析】

試題(1)底邊長(zhǎng)為4,面積為8,即高也要為4,所以就從網(wǎng)格中找一條為4的底邊,找這個(gè)邊的垂直平分線,也為4的點(diǎn)即是三角形的頂點(diǎn);

(2)面積為10的等腰直角三角形,根據(jù)三角形的面積公式可知,兩直角邊要為,那就是找一個(gè)長(zhǎng)為4,寬為2的矩形的對(duì)角線為直角邊,然后連接斜邊;

(3)畫一個(gè)面積為12的矩形后再通過平移一對(duì)對(duì)邊得到平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(1,1)和點(diǎn)B(1,3).求:

(1)求一次函數(shù)的表達(dá)式;

(2)求直線AB與坐標(biāo)軸圍成的三角形的面積;

(3)請(qǐng)?jiān)?/span>x軸上找到一點(diǎn)P,使得PA+PB最小,并求出P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購(gòu)買200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購(gòu)物券30元.

(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤獲得購(gòu)物券的概率;

(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購(gòu)物券,你認(rèn)為哪種方式對(duì)顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)主要銀行的商標(biāo)設(shè)計(jì)基本上都融入了中國(guó)古代錢幣的圖案,下圖中我國(guó)四大銀行的商標(biāo)圖案中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形ABCD 沿直線DC方向平移可得直角梯形HFGE,如果AB=4,BC=9,BI=1.2,HI=3那么陰影面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AEBE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,且DEABC的中位線.延長(zhǎng)EDF,使DF=ED,連接FC,F(xiàn)B.回答下列問題:

(1)試說明四邊形BECF是菱形.

(2)當(dāng)的大小滿足什么條件時(shí),菱形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的保護(hù)美麗圖畫的邛海濕地,西昌市污水處理廠決定先購(gòu)買A、B兩型污水處理設(shè)備共20臺(tái),對(duì)邛海濕地周邊污水進(jìn)行處理,每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知1臺(tái)A型污水處理設(shè)備和2臺(tái)B型污水處理設(shè)備每周可以處理污水640噸,2臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,市污水處理廠購(gòu)買設(shè)備的資金不超過230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案所需資金最少?最少是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案