【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:

(1)四邊形EBFD是矩形;
(2)DG=BE.

【答案】
(1)證明:∵正方形ABCD內(nèi)接于⊙O,

∴∠BED=∠BAD=90°,∠BFD=∠BCD=90°,

又∵DF∥BE,

∴∠EDF+∠BED=180°,

∴∠EDF=90°,

∴四邊形EBFD是矩形


(2)證明:∵正方形ABCD內(nèi)接于⊙O,

的度數(shù)是90°,

∴∠AFD=45°,

又∵∠GDF=90°,

∴∠DGF=∠DFG=45°,

∴DG=DF,

又∵在矩形EBFD中,BE=DF,

∴BE=DG.


【解析】(1)直接利用正方形的性質(zhì)、圓周角定理結(jié)合平行線的性質(zhì)得出∠BED=∠BAD=90°,∠BFD=∠BCD=90°,∠EDF=90°,進(jìn)而得出答案;(2)直接利用正方形的性質(zhì) 的度數(shù)是90°,進(jìn)而得出BE=DF,則BE=DG.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“愛滿揚(yáng)州”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元。
(2)求這50名同學(xué)捐款的平均數(shù)。
(3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為8cm,E、F、G、H分別是AB、BC、CD、DA上的動(dòng)點(diǎn),且AE=BF=CG=DH.

(1)求證:四邊形EFGH是正方形
(2)判斷直線EG是否經(jīng)過一個(gè)定點(diǎn),并說明理由
(3)求四邊形EFGH面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=2,則FM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點(diǎn)D在邊BC 上,以AD為折痕△ABD折疊得到△AB′D,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,…,如此作下去,則△B2015A2016B2016的頂點(diǎn)A2016的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(Ⅰ)已知方程①

請(qǐng)判斷這兩個(gè)方程是否有解?并說明理由;
(Ⅱ)已知 ,求 的值.

查看答案和解析>>

同步練習(xí)冊答案