【題目】如圖,已知△ABC中,AD⊥BC于點D,E為AB邊上任意一點,EF⊥BC于點F,∠1=∠2.求證:DG∥AB.請把證明的過程填寫完整.
證明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定義)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為a,B,C在x軸上,A在y軸上.
(1)作△ABC關(guān)于x軸的對稱圖形△A′B′C′;
(2)求△ABC各頂點坐標(biāo)和△A′B′C′各頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一艘貨船和一艘客船同時從港口A出發(fā),客船每小時比貨船多走5海里,客船與貨船速度的比為4:3,貨船沿東偏南10°方向航行,2小時后貨船到達(dá)B處,客船到達(dá)C處,若此時兩船相距50海里.
(1)求兩船的速度分別是多少?
(2)求客船航行的方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF= DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)過程中,對教材中的一個有趣問題做如下探究:
(習(xí)題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點F.求證:∠CFE=∠CEF;
(變式思考)如圖2,在△ABC中,∠ACB=90°,CD是AB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;
(探究廷伸)如圖3,在△ABC中,在AB上存在一點D,使得∠ACD=∠B,角平分線AE交CD于點F.△ABC的外角∠BAG的平分線所在直線MN與BC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90,則∠BCE 度;
(2)設(shè)∠BAC=,∠BCE=.
①如圖2,當(dāng)點D在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點D在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過程中,設(shè)y=S△OPB , BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com