【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長(zhǎng)線與AC的延長(zhǎng)線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說(shuō)明理由;

(3)若AB=3,AE=,求BD的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2證明見(jiàn)解析;(3)BD=1.

【解析】

1)先根據(jù)等角對(duì)等邊得出EA=ED,再在RtADF中根據(jù)直角三角形的兩銳角互余和等角的余角相等得出∠EAC=F,得出EA=EF,等量代換即可解決問(wèn)題;

2)結(jié)論:BD=CF.如圖2中,在BE上取一點(diǎn)M,使得ME=CE,連接DM.想辦法證明DM=CF,DM=BD即可;

3)如圖3中,過(guò)點(diǎn)EENADAD于點(diǎn)N.設(shè)BD=x,則DN=,DE=AE=,由∠B=45°,ENBN.推出EN=BN=x+=,在RtDEN中,根據(jù)DN2+NE2=DE2,構(gòu)建方程即可解決問(wèn)題.

1)證明:如圖1中,

,

,

,

,

2)解:結(jié)論:

理由:如圖2中,在上取一點(diǎn),使得,連接

,

,,

,

,

,

,

,

3)如圖3中,過(guò)點(diǎn)于點(diǎn)

,,

設(shè),則,,

,

中,

解得(舍棄)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】安徽某水產(chǎn)養(yǎng)殖戶去年利用稻蝦混養(yǎng)使每千克小龍蝦養(yǎng)殖成本降為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)P(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:P=,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示.

(1)求日銷售y與時(shí)間t的函數(shù)關(guān)系式?

(2)設(shè)日銷售利潤(rùn)為W(元),求Wt之間的函數(shù)表達(dá)式;

(3)日銷售利潤(rùn)W哪一天最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過(guò)15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過(guò)計(jì)算,判斷此轎車是否超速.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)CA共線.

已知:CBAD,EDAD,測(cè)得BC=1mDE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一內(nèi)角的平分線與邊相交并把這條邊分成2cm3cm的兩條線段,求的周長(zhǎng).

小華的解答過(guò)程如下:

如圖,平分一內(nèi)角

當(dāng)時(shí),∵平分,

,∵,∴,

,∴.∴的周長(zhǎng)為

你認(rèn)為小華的解答過(guò)程對(duì)嗎?如果不對(duì),請(qǐng)寫(xiě)出正確的解答過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點(diǎn)D是BC邊的中點(diǎn),分別以B、C為圓心,大于線段BC長(zhǎng)度一半的長(zhǎng)為半徑圓弧,兩弧在直線BC上方的交點(diǎn)為P,直線PD交AC于點(diǎn)E,連接BE,則下列結(jié)論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來(lái)的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)乙隊(duì)開(kāi)挖到30m時(shí),用了_____ h. 開(kāi)挖6h時(shí)甲隊(duì)比乙隊(duì)多挖了____ m;

(2)請(qǐng)你求出:

①甲隊(duì)在的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

②乙隊(duì)在的時(shí)段內(nèi),yx之間的函數(shù)關(guān)系式;

(3)當(dāng)x 為何值時(shí),甲、 乙兩隊(duì)在 施工過(guò)程中所挖河渠的長(zhǎng)度相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)裝有進(jìn)水管出水管的容器,從某時(shí)刻起只打開(kāi)進(jìn)水管進(jìn)水,經(jīng)過(guò)一段時(shí)間,在打開(kāi)出水管放水,至15分鐘時(shí),關(guān)停進(jìn)水管.在打開(kāi)進(jìn)水管到關(guān)停進(jìn)水管這段時(shí)間內(nèi),容器內(nèi)的水量y()與時(shí)間x(分鐘)之間的關(guān)系如圖所示,關(guān)停進(jìn)水管后,經(jīng)過(guò)_____________分鐘,容器中的水恰好放完.

查看答案和解析>>

同步練習(xí)冊(cè)答案