【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:

(1)分別寫出A、B兩點(diǎn)的坐標(biāo);

(2)將△ABC向左平移3個(gè)單位長度,再向上平移5個(gè)單位長度,畫出平移后的△A1B1C1;

(3)求 △A1B1C1的面積。

【答案】(1)A(2,0) B(-1,-4);(2)作圖見解析;(3)

【解析】試題分析:(1)從直角坐標(biāo)系中讀出點(diǎn)的坐標(biāo).

2)根據(jù)平移規(guī)律找出各點(diǎn)平移后后得到對(duì)應(yīng)點(diǎn),順次連接即可.

3根據(jù)SABC=S長方形ADEF-SABD-SEBC-SACF,即可求得三角形的面積.

試題解析:1A2,0B-1,-4

2如圖,

3如圖,

SABC=S長方形DBEF-SABD-SEBC-SACF

=4×4-×4×1-×3×1-×4×3=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是直線上的點(diǎn),

)如圖,過點(diǎn),并截取,連接、,判斷的形狀并證明.

)如圖,是直線上的一點(diǎn),直線、相交于點(diǎn),且,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知: 平分 垂直平分, , ,垂足分別是點(diǎn)、.求證(1) (2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式

a2b2c2abbcac [(ab)2(bc)2(ca)2],

該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美

(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;

(2)a2 016,b2 017,c2 018,你能很快求出a2b2c2abbcac的值嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AOB45°,點(diǎn)PQ分別是邊OA,OB上的兩點(diǎn),且OP2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C.

1當(dāng)PCQB時(shí),OQ ;

當(dāng)PCQB時(shí),求OQ的長.

2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABCRtABD中,∠ABC=BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過點(diǎn)AAEDBCB的延長線于點(diǎn)E,過點(diǎn)BBFCADA的延長線于點(diǎn)F,AE,BF相交于點(diǎn)H

1)圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)

2)證明:四邊形AHBG是菱形;

3)若使四邊形AHBG是正方形,還需在RtABC的邊長之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y-2x+1成正比例函數(shù)關(guān)系,且x=2時(shí),y=6.

(1)寫出yx之間的函數(shù)解析式;

(2)求當(dāng)x=3時(shí),y的值;

(3)求當(dāng)y=4時(shí),x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BCGE,AFDE,1=50°

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點(diǎn)Q,且Q=15°,求ACB的度數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案