【題目】如圖,長方形紙片CD沿MN折疊(M,N在AD、BC上),AD∥BC,C′,D′為C、D的對(duì)稱點(diǎn),C′N交AD于E.
(1)若∠1=62°,則∠2=
(2)試判斷△EMN的形狀,并說明理由.

【答案】
(1)56°
(2)解:△EMN為等腰三角形;理由如下:

由折疊的性質(zhì)知:∠1=∠MNE,

又AD∥BC,

∴∠1=∠EMN,

∴∠MNE=∠EMN,

∴EN=EM,

即△EMN為等腰三角形.


【解析】解:(1)如圖所示:由折疊的性質(zhì)得:∠MNE=∠1=62°, ∴∠2=180°﹣2×62°=56°;
所以答案是:56°;
【考點(diǎn)精析】通過靈活運(yùn)用矩形的性質(zhì)和翻折變換(折疊問題),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧上取一點(diǎn)E,連接DE、BE,過點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:

(1)四邊形EBFD是矩形;

(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算(﹣2x23x的結(jié)果是( 。
A.﹣6x6
B.8x6
C.﹣8x7
D.8x7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(-4,-6),將點(diǎn)A先向右平移4個(gè)單位長度,再向上平移6個(gè)單位長度,得到A′,A′的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( )

①平分弦的直徑垂直于弦.②半圓所對(duì)的圓周角是直角.③一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.④在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓周角相等.⑤圓內(nèi)接平行四邊形是矩形.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面圖形上的任意兩點(diǎn)P,Q,如果經(jīng)過某種變換(如:平移、旋轉(zhuǎn)、軸對(duì)稱等)得到新圖形上的對(duì)應(yīng)點(diǎn)P′,Q′,保持P P′= Q Q′,我們把這種對(duì)應(yīng)點(diǎn)連線相等的變換稱為“同步變換”。對(duì)于三種變換: ①平移、②旋轉(zhuǎn)、③軸對(duì)稱,其中一定是“同步變換”的有(填序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種計(jì)算機(jī)每秒可做4×108次運(yùn)算,它工作2×104秒運(yùn)算的次數(shù)為( 。
A.8×109
B.8×1010
C.8×1011
D.8×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列條件中:
①∠B+∠BCD=180°;
②∠1=∠2;
③∠3=∠4;
④∠B=∠5.
能判定AB∥CD的條件個(gè)數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平行四邊形ABCD中,點(diǎn)E在直線AD上,AE=AD,連接CE交BD于點(diǎn)F,則EF:FC的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案