【題目】近年來,共享單車服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號單車的車架新投放時(shí)的示意圖(車輪半徑約為30cm),其中BC∥直線l,∠BCE=71°,CE=54cm.
(1)求單車車座E到地面的高度;(結(jié)果精確到1cm)
(2)根據(jù)經(jīng)驗(yàn),當(dāng)車座E到CB的距離調(diào)整至等于人體胯高(腿長)的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車座E調(diào)整至座椅舒適高度位置E′,求EE′的長.(結(jié)果精確到0.1cm)
(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
【答案】(1)81cm;(2)8.6cm;
【解析】
(1)作EM⊥BC于點(diǎn)M,由EM=ECsin∠BCE可得答案;
(2)作E′H⊥BC于點(diǎn)H,先根據(jù)E′C=求得E′C的長度,再根據(jù)EE′=CE′﹣CE可得答案.
(1)如圖1,過點(diǎn)E作EM⊥BC于點(diǎn)M.
由題意知∠BCE=71°、EC=54,∴EM=ECsin∠BCE=54sin71°≈51.3,則單車車座E到地面的高度為51.3+30≈81cm;
(2)如圖2所示,過點(diǎn)E′作E′H⊥BC于點(diǎn)H.
由題意知E′H=70×0.85=59.5,則E′C==≈62.6,∴EE′=CE′﹣CE=62.6﹣54=8.6(cm).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn)A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線BC的表達(dá)式;
(3)在(2)的條件下,直線BC與y軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;
(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28 m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=x m.若在P處有一棵樹與墻CD,AD的距離分別是15 m和6 m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為( )
A. 196 B. 195 C. 132 D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一次函數(shù)y=mx+4m﹣2.
(1)若這個(gè)函數(shù)的圖象經(jīng)過原點(diǎn),求m的值;
(2)若這個(gè)函數(shù)的圖象不過第四象限,求m的取值范圍;
(3)不論m取何實(shí)數(shù)這個(gè)函數(shù)的圖象都過定點(diǎn),試求這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠ACB=72°,
(1)若BD⊥AC于D,求∠ABD的度數(shù);
(2)若CE平分∠ACB,求證:AE=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),B(2,0),與y軸相交于點(diǎn)C.
(1)求二次函數(shù)的解析式;
(2)若點(diǎn)E是第一象限的拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)四邊形ABEC的面積最大時(shí),求點(diǎn)E的坐標(biāo),并求出四邊形ABEC的最大面積;
(3)若點(diǎn)M在拋物線上,且在y軸的右側(cè).⊙M與y軸相切,切點(diǎn)為D.以C,D,M為頂點(diǎn)的三角形與△AOC相似,請直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.現(xiàn)將菱形OABC沿x軸的正方向無滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2018次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,B4,…,則B2018的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90,點(diǎn)D在BC的延長線上,連接AD,過B作BE⊥AD,垂足為E,交AC于點(diǎn)F,連接CE.
(1)求證:△BCF≌△ACD.
(2)猜想∠BEC的度數(shù),并說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com