【題目】如圖,在半徑為R的⊙O中,和度數(shù)分別為36°和108°,弦CD與弦AB長(zhǎng)度的差為(用含有R的代數(shù)式表示).
A. R B. C. 2R D. 3R
【答案】A
【解析】如解答圖,作輔助線,構(gòu)造三個(gè)等腰三角形△OAB,△OCD與△OCE;證明△COE≌△OAB,則有OE=AB;利用等腰三角形性質(zhì)證明DE=OE,因此CD-AB=CD-DE=CE=R.
連接OA、OB,則△OAB為等腰三角形,頂角為36°,底角為72°;
連接OC、OD,則△OCD為等腰三角形,頂角為108°,底角為36°.
在CD上取一點(diǎn)E,使得CE=OC,連接OE,則△OCE為等腰三角形,頂角為36°,底角為72°.在△COE與△OAB中,CO=AO=R,∠OCE=∠AOB=36°,CE=OB=R,
∴△COE≌△OAB(SAS), ∴OE=AB. ∵∠EOD=∠OEC-∠ODC=72°-36°=36°,
∴∠EOD=∠ODE, ∴DE=OE, ∴CD-AB=CD-OE=CD-DE=CE=R. 故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面一段文字:
問(wèn)題:能化為分?jǐn)?shù)形式嗎?
探求:步驟①設(shè),步驟②,
步驟③,則,
步驟④,解得:.
根據(jù)你對(duì)這段文字的理解,回答下列問(wèn)題:
(1)步驟①到步驟②的依據(jù)是什么;
(2)仿照上述探求過(guò)程,請(qǐng)你嘗試把化為分?jǐn)?shù)形式:
(3)請(qǐng)你將化為分?jǐn)?shù)形式,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別是-1,0,3,點(diǎn)P為數(shù)軸上任意點(diǎn),其對(duì)應(yīng)的數(shù)為x.如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)P點(diǎn)到點(diǎn)M、點(diǎn)N的距離相等,則t的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是( )
A. B. 4 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)A(4,0),點(diǎn)B是y軸正半軸上一點(diǎn),如圖1,以AB為直角邊作等腰直角三角形ABC.
(1)當(dāng)點(diǎn)B坐標(biāo)為(0,1)時(shí),求點(diǎn)C的坐標(biāo);
(2)如圖2,以OB為直角邊作等腰直角△OBD,點(diǎn)D在第一象限,連接CD交y軸于點(diǎn)E.在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,BE的長(zhǎng)是否發(fā)生變化?若不變,求出BE的長(zhǎng);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,點(diǎn)E在BC上.過(guò)點(diǎn)D作DF∥BC,連接DB.
求證:(1)△ABD≌△ACE;
(2)DF=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)組織“獻(xiàn)愛(ài)心手拉手”捐款活動(dòng).對(duì)社區(qū)部分捐款戶數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì)后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計(jì)圖和統(tǒng)計(jì)表(圖中信息不完整).已知A、B兩組捐款戶數(shù)的比為1:5.請(qǐng)結(jié)合以上信息解答下列問(wèn)題.捐款戶數(shù)分組統(tǒng)計(jì)表
(1)本次調(diào)查了 戶;
(2)補(bǔ)全“捐款戶數(shù)分組統(tǒng)計(jì)表”和“捐款戶數(shù)分組統(tǒng)計(jì)圖1”;
(3)若該社區(qū)有2000戶住戶,請(qǐng)根據(jù)以上信息,估計(jì)全社區(qū)捐款不少于150元的戶數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為_______(只添加一個(gè)條件即可);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com