【題目】某種蔬菜的單價 與銷售月份x之間的關系如圖1所示,成本 與銷售月份x之間的關系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)

1)已知6月份這種蔬菜的成本最低,此時出售每千克的利潤是 元.(利潤=售價-成本);

2)設每千克該蔬菜銷售利潤為P,請列出xP之間的函數(shù)關系式,并求出哪個月出售這種蔬菜每千克的利潤最大,最大利潤是多少?

【答案】12;(25月時利潤最大,最大利潤為元.

【解析】

1)找出當x=6時,y1y2的值,二者做差即可得出結(jié)論;

2)觀察圖象找出點的坐標,利用待定系數(shù)法即可求出y1、y2關于x的函數(shù)關系式,二者做差后利用二次函數(shù)的性質(zhì)即可解決最值問題.

1)當x=6時,y1=3y2=1

y1y2=31=2,∴6月份出售這種蔬菜每千克的收益是2元.

2)設y1=mx+ny2=ax62+1

將(3,5)、(6,3)代入y1=mx+n,得,解得:,∴y1x+7;

將(3,4)代入y2=ax62+14=a362+1,解得:a,∴y2x62+1x24x+13,∴P=y1y2x+7﹣(x24x+13x2x6x52

0,∴當x=5時,P取最大值,最大值為

答:5月份出售這種蔬菜,每千克的收益最大,最大利潤是/千克.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為的正方形的對角線交于點,將正方形沿直線折疊,點落在對角線上的點處,折痕于點,則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對角線交于點D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(a,1)、B(﹣1,b)都在函數(shù)(x0)的圖象上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點Ax軸負半軸上,頂點Bx軸正半軸上.若拋物線p=ax2-10ax+8a0)經(jīng)過點C、D,則點B的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要建一個面積為150平方米的長方形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻,墻長為18米,另三邊用籬笆圍成,如籬笆長度為35米,且要求用完。求雞場的長與寬各是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿BC的方向運動,且DE始終經(jīng)過點A,EFAC交于M點.

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由;

(3)當線段AM最短時,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC= ,BAC=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點Ax軸負半軸上一個定點,點P是函數(shù)上一個動點,軸于點B,當點P的橫坐標逐漸增大時,四邊形OAPB的面積將會  

A. 先增后減 B. 先減后增 C. 逐漸減小 D. 逐漸增大

查看答案和解析>>

同步練習冊答案