【題目】昆明某家電專賣店銷售每臺進(jìn)價分別200元、160元的A,B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況
(注:進(jìn)價、售價均保持不變,利銷=銷售收入進(jìn)貨成本)
(1)求A,B兩種型號的電風(fēng)扇的銷售單價;
(2)若專賣店準(zhǔn)備用不多于3560元的金額再采購這兩種型號的電風(fēng)扇共20臺,且采購A型電風(fēng)扇的數(shù)量不少于8臺.求專賣店有哪幾種采購方案?
(3)在(2)的條件下.如果采購的電風(fēng)扇都能銷售完,請直接寫出哪種采購方案專賣店所獲利潤最大?最大利潤是多少?
【答案】(1)250元、200元;(2)方案一:購買A種型號的電風(fēng)扇8臺,則B種型號的電風(fēng)扇12臺;方案二:購買A種型號的電風(fēng)扇9臺,則B種型號的電風(fēng)扇11臺;(3)購買A種型號的電風(fēng)扇9臺,則B種型號的電風(fēng)扇11臺獲得利潤最大,最大利潤為890元.
【解析】
(1)根據(jù)表格可以列出相應(yīng)的方程組,從而可以解答本題;
(2)根據(jù)題意可以得到相應(yīng)的不等式組,從而可以求得有幾種采購方案;
(3)根據(jù)(2)中的購買方案計算出兩種方案的利潤,然后再進(jìn)行比較即可.
(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價分別為x元、y元,
,
解得:
,
答:A、B兩種型號電風(fēng)扇的銷售單價分別為250元、200元;
(2)設(shè)購買A種型號的電風(fēng)扇m臺,則B種型號的電風(fēng)扇(20-m)臺,則
解得,8≤m≤9,
故A、B兩種型號的電風(fēng)扇的采購方案有二種,
方案一:購買A種型號的電風(fēng)扇8臺,則B種型號的電風(fēng)扇12臺;
方案二:購買A種型號的電風(fēng)扇9臺,則B種型號的電風(fēng)扇11臺.
(3)方案一獲得的利潤為:8×(250-200)+12×(200-160)=880(元),
方案二:獲得的利潤為:9×(250-200)+11×(200-160)=890(元).
所以,購買A種型號的電風(fēng)扇9臺,則B種型號的電風(fēng)扇11臺獲得利潤最大,最大利潤為890元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復(fù)疑無路”.
(1)小明回答該問題時,對第二個字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個,則小明回答正確的概率是 ;
(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點D2,依此類推,∠ABD4與∠ACD4的角平分線交于點D5,則∠BD5C的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程(米)與各自所用時間(秒)之間的函數(shù)圖象分別為線段和折線(如圖所示),請根據(jù)圖象,回答下列問題.
(1)在起跑后60秒時,乙在甲的前面還是后面?
(2)在起跑后多少秒時,兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點,B(0,6),A(8,0),以點B為旋轉(zhuǎn)中心把△ABO逆時針旋轉(zhuǎn),得△A′BO′,點O,A旋轉(zhuǎn)后的對應(yīng)點為O′,A′,記旋轉(zhuǎn)角為β.
(1)如圖1,若β=90°,求AA′的長;
(2)如圖2,若β=120°,求點O′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠E=90°,那么∠B+∠D等于多少度?為什么?
解:過點E作EF∥AB,
得∠B+∠BEF=180°(________________________),
因為AB∥CD(已知),
EF∥AB(所作),
所以EF//CD(________________________).
得________________________(兩直線平行,同旁內(nèi)角互補(bǔ)),
所以∠B+∠BEF+∠DEF+∠D=________°(__________).
即∠B+∠BED+∠D=___________°.
因為∠BED=90°(已知),
所以∠B+∠D=___________°(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.
(1)畫出△ABC的AB邊上的中線CD;
(2)畫出△ABC向右平移4個單位后得到的△A1B1C1;
(3)圖中AC與A1C1的關(guān)系是: ;
(4)能使S △ABQ=S △ABC的格點Q,共有 個,在圖中分別用Q 1,Q 2,…表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系xOy中,直線l經(jīng)過點A(-1,0),點A1,A2,A3,A4,A5,……按所示的規(guī)律排列在直線l上.若直線 l上任意相鄰兩個點的橫坐標(biāo)都相差1、縱坐標(biāo)也都相差1,若點An(n為正整數(shù))的橫坐標(biāo)為2015,則n= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com