【題目】【探索新知】:如圖1,射線OC在∠AOB的內部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個角的平分線 這個角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點P從PN位置開始,以每秒10°的速度逆時針旋轉,當PQ與PN成180°時停止旋轉,旋轉的時間為t秒.
(3)當t為何值時,射線PM是∠QPN的“巧分線”;
(4)若射線PM同時繞點P以每秒5°的速度逆時針旋轉,并與PQ同時停止,請直接寫出當射線PQ是∠MPN的“巧分線”時t的值.
【答案】(1)是;(2)α或α或α;(3)t為9或12或18時;(4)t為2.4或4或6.
【解析】試題分析:(1)根據(jù)巧分線定義即可判定;(2)分三種情況,根據(jù)巧分線定義即可求解;(3)分三種情況,根據(jù)巧分線定義得到方程求解即可;(4)分三種情況,根據(jù)巧分線定義得到方程求解即可.
試題解析:
(1)一個角的平分線是這個角的“巧分線”;(填“是”或“不是”)
故答案為:是
(2)∵∠MPN=α,
∴∠MPQ=α或α或α;
故答案為α或α或α;
深入研究:
(3)依題意有
①10t=60+×60,
解得t=9;
②10t=2×60,
解得t=12;
③10t=60+2×60,
解得t=18.
故當t為9或12或18時,射線PM是∠QPN的“巧分線”;
(4)依題意有
①10t=(5t+60),
解得t=2.4;
②10t=(5t+60),
解得t=4;
③10t=(5t+60),
解得t=6.
故當t為2.4或4或6時,射線PQ是∠MPN的“巧分線”.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,中,是的中點,將沿折疊后得到,且點在內部.將延長交于點.
(1)猜想并填空:__________(填“”、“”、“”);
(2)請證明你的猜想;
(3)如圖2,當,設,,,求出、、三者之間的關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點D,E為BC的中點,已知A(0,4)、C(5,0),二次函數(shù) 的圖象拋物線經過A、C兩點.
(1)求該二次函數(shù)的表達式;
(2)F,G分別為x軸、y軸上的動點,首尾順次連接D、E、F、G構成四邊形DEFG,求四邊形DEFG周長的最小值;
(3)拋物線上是否存在點P,使△ODP的面積為8?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,請判斷AB與EF的位置關系,并說明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點E、F、G、H分別在AB、BC、CD、AD邊上且AE=CG,AH=CF.
(1)求證:四邊形EFGH是平行四邊形;
(2)如果AB=AD,且AH=AE,求證:四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知三個關于x的一元二次方程ax2+bx+c=0,bx2+cx+a=0,cx2+ax+b=0恰有一個公共根,則 的值為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線a 、b被直線c所截,現(xiàn)給出下列四種條件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以O為原點的直角坐標系中,A點的坐標為(0,3),直線x=-3交x軸于點B,P為線段AB上一動點,作直線PC⊥PO,交于直線x=﹣3于點C。過P點作直線MN平行于x軸,交y軸于M,交直線x=﹣3于點N。
(1)當點C在第二象限時,求證:△OPM≌△PCN;
(2)設AP長為m,以P、O、B、C為頂點的四邊形的面積為S,請求出S與M之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)當點P在線段AB上移動時,點C也隨之在直線x=-3上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形的點P的坐標,如果不可能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作DF⊥AC于點F.
(1)判斷DF與是⊙O的位置關系,并證明你的結論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com