【題目】解方程組:
(1)
(2) .
【答案】
(1)解: ,
①×3+②×2,得:19x=114,解得:x=6,
將x=6代入①,得:18+4y=16,解得:y=﹣ ,
∴方程組的解為:
(2)解:方程組整理得: ,
①×2+②×3得:13x=52,解得x=4,
把x=4代入①得:8﹣3y=17,解得y=﹣3,
∴方程組的解為:
【解析】(1)①×3+②×2消掉y,可得關(guān)于x的方程,再解即可得到x的值,進(jìn)而可得y的值;(2)首先整理方程組得 ,再①×2+②×3消掉y,可得關(guān)于x的方程,再解即可得到x的值,進(jìn)而可得y的值.
【考點(diǎn)精析】通過靈活運(yùn)用解二元一次方程組,掌握二元一次方程組:①代入消元法;②加減消元法即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點(diǎn)運(yùn)動到點(diǎn)(1,1),第2次接著運(yùn)動到點(diǎn)(2,0),第3次接著運(yùn)動到點(diǎn)(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2015次運(yùn)動后,動點(diǎn)P的坐標(biāo)是( )
A.(2015,0)
B.(2015,1)
C.(2015,2)
D.(2016,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1(2,2)在直線y=x上,過點(diǎn)A1作A1B1∥y軸交直線于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1,再過點(diǎn)C1作A2B2∥y軸,分別交直線y=x和于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2…,按此規(guī)律進(jìn)行下去,則等腰直角△AnBnCn的面積為 .(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義運(yùn)算“※”,對于任意實(shí)數(shù)a、b,都有a※b=a2-3a+b,如:3※5=32-3×3+5,若x※2=6,則實(shí)數(shù)x的值是 ___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動點(diǎn)。
(1)求證DA是⊙O的切線;
(2)DP的長度為多少時,∠BPC的度數(shù)最大,最大度數(shù)是多少?請說明理由。
(3)點(diǎn)P運(yùn)動的過程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個最小值,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角尺如圖①擺放(在Rt△ABC中,∠ACB=90°,∠B=60°.Rt△DEF中,∠EDF=90°,∠E=45°).點(diǎn)D為AB的中點(diǎn),DE交AC于點(diǎn)P,DF經(jīng)過C,且BC=2.
(1)求證:△ADC∽△APD;
(2)求△APD的面積;
(3)如圖②,將△DEF繞點(diǎn)D順時針方向旋轉(zhuǎn)角(0°<<60°),此時的等腰直角三角尺記為△DE′F′,DE′交AC于點(diǎn)M,DF′交BC于點(diǎn)N,試判斷的值是否會隨著的變化而變化,如果不變,請求出的值;反之,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com