【題目】已知線段AB=20cm,直線AB上有一點C,且BC=6cm,點M是線段AB的中點,點N是線段BC的中點,則MN= cm.
【答案】7或13.
【解析】
試題分析:根據(jù)中點的定義,可分別求出AM、BN的長度,點C存在兩種情況,一種在線段AB上,一種在線段AB外,分類討論,即可得出結(jié)論.
解:依題意可知,C點存在兩種情況,一種在線段AB上,一種在線段AB外.
①C點在線段AB上,如圖1:
∵點M是線段AB的中點,點N是線段BC的中點,
∴AM==10cm,BN==3cm,
MN=AB﹣AM﹣BN=20﹣10﹣3=7cm.
②C點在線段AB外,如圖2:
∵點M是線段AB的中點,點N是線段BC的中點,
∴AM==10cm,BN==3cm,
MN=AB﹣AM+BN=20﹣10+3=13cm.
綜上得MN得長為7cm或者13cm.
故答案為:7或13.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣4x+3.
(1)把這個二次函數(shù)化成y=a(x﹣h)2+k的形式;
(2)寫出二次函數(shù)的對稱軸和頂點坐標;
(3)求二次函數(shù)與x軸的交點坐標;
(4)畫出這個二次函數(shù)的圖象;
(5)觀察圖象并寫出y隨x增大而減小時自變量x的取值范圍.
(6)觀察圖象并寫出當x為何值時,y>0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平整的地面上,有若干個完全相同的棱長的小正方體堆成一個幾何體(如圖所示).
(1)這個幾何體由 個小正方體組成,請畫出這個幾何體的三視圖;
(2)如果在這個幾何體的表面噴上黃色的漆,則在所有的小正方體中,有 個正方體只有兩個面是黃色,有 個正方體只有三個面是黃色(注:該幾何體與地面重合的部分不噴漆).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l的解析式為y=x﹣1,拋物線y=ax2+bx+2經(jīng)過點A(m,0),B(2,0),D(1,)三點.
(1)求拋物線的解析式及A點的坐標,并在圖示坐標系中畫出拋物線的大致圖象;
(2)已知點 P(x,y)為拋物線在第二象限部分上的一個動點,過點P作PE垂直x軸于點E,延長PE與直線l交于點F,請你將四邊形PAFB的面積S表示為點P的橫坐標x的函數(shù),并求出S的最大值及S最大時點P的坐標;
(3)將(2)中S最大時的點P與點B相連,求證:直線l上的任意一點關(guān)于x軸的對稱點一定在PB所在直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com