【題目】西南大學附中初2020級小李同學想利用學過的知識測量棵樹的高度,假設(shè)樹是豎直生長的,用圖中線段AB表示,小李站在C點測得∠BCA45°,小李從C點走4米到達了斜坡DE的底端D點,并測得∠CDE150°,從D點上斜坡走了8米到達E點,測得∠AED60°,B,C,D在同一水平線上,A、B、C、D、E在同一平面內(nèi),則大樹AB的高度約為( 。┟祝ńY(jié)果精確到0.1米,參考數(shù)據(jù):1.41,1.73

A.24.3B.24.4C.20.3D.20.4

【答案】B

【解析】

EEGABG,EFBDF,則BG=EF,EG=BF,求得∠EDF=30°,根據(jù)直角三角形的性質(zhì)得到EF=DE=4,DF=4,得到CF=CD+DF=4+4,根據(jù)三角函數(shù)的定義列方程即可得到結(jié)論.

EEGABG,EFBDF

BGEF,EGBF,

∵∠CDE150°,

∴∠EDF30°,

DE8,

EFDE4,DF4,

CFCD+DF4+4,

∵∠ABC90°,∠ACB45°

ABBC,

GEBFAB+4+4,AGAB4,

∵∠AED60°,∠GED=∠EDF30°,

∴∠AEG30°,

tan30° ,

解得:AB14+6≈24.4,

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB-1,2)是一次函數(shù)與反比例函數(shù)

)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D

(1)根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?

(2)求一次函數(shù)解析式及m的值;

(3)P是線段AB上的一點,連接PC,PD,若△PCA△PDB面積相等,求點P坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,點EBC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與x軸、y軸分別交于點B、點C,經(jīng)過BC兩點的拋物線與x軸的另一個交點為A,頂點為P

1)求該拋物線的解析式;

2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則經(jīng)過6小時可到達乙地.

(1)甲、乙兩地相距多少千米?

(2)如果汽車把速度提高到 v(千米/時),那么從甲地到乙地所用時間 t(小時)將怎樣變化?

(3)寫出 t v之間的函數(shù)關(guān)系式;

(4)因某種原因,這輛汽車需在5小時內(nèi)從甲地到達乙地,則此時汽車的平均速度至少應是多少?

(5)已知汽車的平均速度最大可達80千米/時,那么它從甲地到乙地最快需要多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校鍋爐旁建有一個儲煤庫,開學初購進一批煤,現(xiàn)在知道:按每天用煤0.6噸計算,一學期(按150天計算)剛好用完.若每天的耗煤量為 x噸,那么這批煤能維持 y

1)則 y x之間有怎樣的函數(shù)關(guān)系?

2)畫出此函數(shù)的圖象.

3)若每天節(jié)約0.1噸,則這批煤能多維持多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y1=﹣x2+bx+c的圖象與x軸、y軸分別交于點A(﹣1,0)和點B02),圖象的對稱軸交x軸于點C,一次函數(shù)y2mx+n的圖象經(jīng)過點BC

1)求二次函數(shù)的解析式y1和一次函數(shù)的解析式y2;

2)點Px軸下方的二次函數(shù)圖象上,且SACP33,求點P的坐標;

3)結(jié)合圖象,求當x取什么范圍的值時,有y1y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個圖案都由若干個“●”組成,其中第①個圖案中有7“●”,第②個圖案中有13“●”,則第⑨個圖案中“●”的個數(shù)為( )

A.87B.91C.103D.111

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形中,,點邊上,平分,且.

1)求證:;

2)如圖2,已知邊于點,交邊的延長線于點,且平分. ,試比較的大小,并說明理由.

查看答案和解析>>

同步練習冊答案