【題目】西南大學附中初2020級小李同學想利用學過的知識測量棵樹的高度,假設(shè)樹是豎直生長的,用圖中線段AB表示,小李站在C點測得∠BCA=45°,小李從C點走4米到達了斜坡DE的底端D點,并測得∠CDE=150°,從D點上斜坡走了8米到達E點,測得∠AED=60°,B,C,D在同一水平線上,A、B、C、D、E在同一平面內(nèi),則大樹AB的高度約為( 。┟祝ńY(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
A.24.3B.24.4C.20.3D.20.4
【答案】B
【解析】
過E作EG⊥AB于G,EF⊥BD于F,則BG=EF,EG=BF,求得∠EDF=30°,根據(jù)直角三角形的性質(zhì)得到EF=DE=4,DF=4,得到CF=CD+DF=4+4,根據(jù)三角函數(shù)的定義列方程即可得到結(jié)論.
過E作EG⊥AB于G,EF⊥BD于F,
則BG=EF,EG=BF,
∵∠CDE=150°,
∴∠EDF=30°,
∵DE=8,
∴EF=DE=4,DF=4,
∴CF=CD+DF=4+4,
∵∠ABC=90°,∠ACB=45°,
∴AB=BC,
∴GE=BF=AB+4+4,AG=AB﹣4,
∵∠AED=60°,∠GED=∠EDF=30°,
∴∠AEG=30°,
∴tan30°= ,
解得:AB=14+6≈24.4,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線與x軸的另一個交點為A,頂點為P.
(1)求該拋物線的解析式;
(2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車往返于甲、乙兩地之間,如果汽車以50千米/時的平均速度從甲地出發(fā),則經(jīng)過6小時可到達乙地.
(1)甲、乙兩地相距多少千米?
(2)如果汽車把速度提高到 v(千米/時),那么從甲地到乙地所用時間 t(小時)將怎樣變化?
(3)寫出 t與 v之間的函數(shù)關(guān)系式;
(4)因某種原因,這輛汽車需在5小時內(nèi)從甲地到達乙地,則此時汽車的平均速度至少應是多少?
(5)已知汽車的平均速度最大可達80千米/時,那么它從甲地到乙地最快需要多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校鍋爐旁建有一個儲煤庫,開學初購進一批煤,現(xiàn)在知道:按每天用煤0.6噸計算,一學期(按150天計算)剛好用完.若每天的耗煤量為 x噸,那么這批煤能維持 y天.
(1)則 y與 x之間有怎樣的函數(shù)關(guān)系?
(2)畫出此函數(shù)的圖象.
(3)若每天節(jié)約0.1噸,則這批煤能多維持多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y1=﹣x2+bx+c的圖象與x軸、y軸分別交于點A(﹣1,0)和點B(0,2),圖象的對稱軸交x軸于點C,一次函數(shù)y2=mx+n的圖象經(jīng)過點B、C.
(1)求二次函數(shù)的解析式y1和一次函數(shù)的解析式y2;
(2)點P在x軸下方的二次函數(shù)圖象上,且S△ACP=33,求點P的坐標;
(3)結(jié)合圖象,求當x取什么范圍的值時,有y1≤y2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個圖案都由若干個“●”組成,其中第①個圖案中有7個“●”,第②個圖案中有13個“●”,…,則第⑨個圖案中“●”的個數(shù)為( )
A.87B.91C.103D.111
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,,點在邊上,平分,且.
(1)求證:;
(2)如圖2,已知交邊于點,交邊的延長線于點,且平分. 若,試比較與的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com