精英家教網 > 初中數學 > 題目詳情

如圖,四邊形OABC是矩形,點A、C的坐標分別為(3,0)、(0,1),點D是線段BC上的動點(與端點B、C不重合),過點D作直線交折線OAB于點E.

(1)記的面積為S,求S與b的函數關系式;
(2)當點E在線段OA上時,若矩形OABC關于直線DE的對稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請說明理由。

(1);(2)不變,.

解析試題分析:(1)要表示出△ODE的面積,要分兩種情況討論,①如果點E在OA邊上,只需求出這個三角形的底邊OE長(E點橫坐標)和高(D點縱坐標),代入三角形面積公式即可;②如果點E在AB邊上,這時△ODE的面積可用長方形OABC的面積減去△OCD、△OAE、△BDE的面積;
(2)重疊部分是一個平行四邊形,由于這個平行四邊形上下邊上的高不變,因此決定重疊部分面積是否變化的因素就是看這個平行四邊形落在OA邊上的線段長度是否變化.
試題解析:
解:(1)∵四邊形OABC是矩形,點A、C的坐標分別為(3,0),(0,1),
∴點B的坐標是(3,1),
若直線經過點A(3,0)時,則b=
若直線經過點B(3,1)時,則b=;
若直線經過點C(0,1)時,則b=1.
①如圖1,若直線與折線OAB的交點在OA上時,即1<b≤,
此時E(2b,0)
∴S=OE•CO=×2b×1=b;

②如圖2,若直線與折線OAB的交點在BA上時,即,此時

∴S=S-(S△OCD+S△OAE+S△DBE)=
綜上所述,;
(2)設O1A1與CB相交于點M,OA與C1B1相交于點N,則矩形O1A1B1C1與矩形OABC的重疊部分的面積即為四邊形DNEM的面積.由題意知,DM∥NE,DN∥ME,
∴四邊形DNEM為平行四邊形
根據軸對稱知,∠MED=∠NED
又∵∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四邊形DNEM為菱形.
過點D作DH⊥OA,垂足為H,設菱形DNEM的邊長為a,
由題意知,D(2b-2,1),E(2b,0),
∴DH=1,HE=2b-(2b-2)=2,
∴HN=HE-NE=2-a,
則在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,
∴a=
∴S四邊形DNEM=NE•DH=
∴矩形O1A1B1C1與矩形OABC的重疊部分的面積不發(fā)生變化,面積始終為
考點:一次函數綜合應用.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

如圖,已知一次函數與反比例函數的圖象交于點A(-4,-2)和B(a,4).

(1)求反比例函數的解析式和點B的坐標;
(2)根據圖象回答,當x在什么范圍內時,一次函數的值大于反比例函數的值?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

為保護學生視力,課桌椅的高度都是按一定的關系配套設計的,研究表明:假設課桌的高度為 cm,椅子的高度為 cm,則應是的一次函數,下表列出兩套符合條件的課桌椅的高度:

 
第一套
第二套
椅子高度(cm)
40
37
課桌高度(cm)
75
70
(1)請確定的函數關系式.
(2)現有一把高39 cm的椅子和一張高78.2 cm的課桌,它們是否配套?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線AB與坐標軸分別交于點A、點B,且OA、OB的長分別為方程x2-6x+8=0的兩個根(OA<OB),點C在y軸上,且OA︰AC=2︰5,直線CD垂直于直線AB于點P,交x軸于點D.

(1)求出點A、點B的坐標.
(2)請求出直線CD的解析式.
(3)若點M為坐標平面內任意一點,在坐標平面內是否存在這樣的點M,使以點B、P、D、M為頂點的四邊形是平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某物流公司的甲、乙兩輛貨車分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達C地,并在C地用1小時配貨,然后按原速度開往B地,乙車從B地直達A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時)的函數的部分圖像.

(1)A、B兩地的距離是          千米,乙車出發(fā)         小時與甲相遇;
(2)求乙車出發(fā)1.5小時后直至到達A地的過程中,的函數關系式及的取值范圍;
(3)乙車出發(fā)多長時間,兩車相距100千米?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,直線y=-x+8與x軸、y軸分別相交于點A、B,設M是OB上一點,若將△ABM沿AM折疊,使點B恰好落在x軸上的點B'處.

求: (1)點B'的坐標:             .(2分)
(2)直線AM所對應的函數關系式.(8分)

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

若方程組的解滿足,求關于的函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某農戶種植一種經濟作物,總用水量y(米3)與種植時間x(天)之間的函數關系式圖

(1)第20天的總用水量為多少米3?
(2)當x≥20時,求y與x之間的函數關系式;
(3)種植時間為多少天時,總用水量達到7000米3?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

 


進價(元/部)
4000
2500
售價(元/部)
4300
3000
該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價﹣進價)×銷售量)
(1)該商場計劃購進甲、乙兩種手機各多少部?
(2)通過市場調研,該商場決定在原計劃的基礎上,減少甲種手機的購進數量,增加乙種手機的購進數量.已知乙種手機增加的數量是甲種手機減少的數量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

同步練習冊答案