【題目】如圖,矩形ABCD中,AB=4,AD=3,∠DAB的角平分線交邊CD于點E.點P在射線AE上以每秒個單位長度的速度沿射線AE方向從點A開始運動;過點P作PQ⊥AB于點Q,以PQ為邊向右作平行四邊形,點N在射線AE上,且AP=PN.設(shè)P點運動時間為t秒.
(1)PQ= (用含t的代數(shù)式表示).
(2)當(dāng)點M落在BC邊上時,求t的值.
(3)設(shè)平行四邊形PQMN與矩形ABCD重合部分面積為S,當(dāng)點P在線段AE上運動時,求S與t 的函數(shù)關(guān)系式.
(4)直接寫出在點P、Q運動的過程中,整個圖形中形成的三角形存在全等三角形時t的值(不添加任何輔助線).
【答案】(1)t;(2)2;(3)當(dāng)0≤t≤時,;當(dāng)≤2時,;當(dāng)≤3時,;(4)2或3或
【解析】
(1)判斷出ΔAPQ是等腰三角形即可得出結(jié)結(jié)論;
(2)由AP=PN判斷出Q為AB的中點,進(jìn)而求得AQ=2,即可得出結(jié)論;
(3)分三種情況討論:①當(dāng)0﹤t≤時,重合部分是平行四邊形PQMN;②當(dāng)≤2時,重合部分是五邊形PQMGE,③當(dāng)≤3時,重合部分是五邊形PQGCE,分別求解即可;
(4)也是分三種情況討論:①當(dāng)點Q是AB的中點時,ΔAPQ≌ΔQMB;②當(dāng)點P與點E重合時,ΔAPQ≌ΔEAD;③當(dāng)ΔPEK≌ΔQGB時,分別求解即可.
(1)∵四邊形ABCD是矩形,
∴∠BAD=90,
∵AE平分∠BAD,
∴∠BAE=45,
∵PQ⊥AB,
∴ΔAPQ是等腰直角三角形,
由運動知,AP=t,
∴PQ= t;
(2)如圖2,當(dāng)點M落在BC上時,
∵四邊形PQMN是平行四邊形,
∴PQ∥MN,即PQ∥BN,
∵AP=PN,
∴AQ=QB=2.
∵∠NAB =45°,
∴PQ=AQ=2.
∴t=2
(3)①當(dāng)0≤t≤時,如圖4,重合部分是平行四邊形PQMN,;
②當(dāng)≤2時,如圖5,重合部分是五邊形PQMGE,
;
③當(dāng)≤3時,如圖6,重合部分是五邊形PQGCE,
=,
綜上,當(dāng)0≤t≤時,;當(dāng)≤2時,;當(dāng)≤3時,;.
(4)①如圖7,當(dāng)點Q是AB的中點時,ΔAPQ≌ΔQMB,此時;
②如圖8,當(dāng)點P與點E重合時,ΔAPQ≌ΔEAD,,
③如圖9,當(dāng)ΔPEK≌ΔQGB時,由EK=BQ得:t-3=4-t,解得.
綜上,t的值為2或3或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生參加“新冠肺炎”防疫知識競賽,從中抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,并按照成績從低到高分成A,B,C,D,E五個小組,繪制統(tǒng)計圖如表(未完成),解答下列問題:
(1)樣本容量為 ,頻數(shù)分布直方圖中a= ;
(2)扇形統(tǒng)計圖中E小組所對應(yīng)的扇形圓心角為n°,求n的值并補全頻數(shù)分布直方圖;
(3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有3000名學(xué)生,估計成績優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P做x軸的垂線l交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)已知點F(0,),當(dāng)點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點I為△ABC的內(nèi)心,AB=4,AC=3,BC=2,將∠ACB平移使其頂點與I重合,則圖中陰影部分的周長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點A的坐標(biāo)為(﹣4,0),點B在y軸上,若反比例函數(shù)(k≠0)的圖象過點C,則該反比例函數(shù)的表達(dá)式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情爆發(fā)之后,全國許多省市對湖北各地進(jìn)行了援助,廣州市某醫(yī)療隊備好醫(yī)療防護(hù)物資迅速援助武漢.第一批醫(yī)療隊員乘坐高鐵從廣州出發(fā),2.5小時后,第二批醫(yī)療隊員乘坐飛機(jī)從廣州出發(fā),兩批隊員剛好同時到達(dá)武漢.已知廣州到武漢的飛行距離為800千米,高鐵路程為飛行距離的倍.
(1)求廣州到武漢的高鐵路程;
(2)若飛機(jī)速度與高鐵速度之比為5:2,求飛機(jī)和高鐵的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平,再一次折疊,使點D落到EF上點G處,并使折痕經(jīng)過點A,已知BC=2,則線段EG的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五名學(xué)生投籃球,每人投10次,統(tǒng)計他們每人投中的次數(shù).得到五個數(shù)據(jù),并對數(shù)據(jù)進(jìn)行整理和分析給出如下信息:
平均數(shù) | 中位數(shù) | 眾數(shù) |
m | 6 | 7 |
則下列選項正確的是( )
A.可能會有學(xué)生投中了8次
B.五個數(shù)據(jù)之和的最大值可能為30
C.五個數(shù)據(jù)之和的最小值可能為20
D.平均數(shù)m一定滿足
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在正方形ABCD中,G是CD邊上的一個動點(不與C、D重合),以CG為邊在正方形ABCD外作一個正方形CEFG,連結(jié)BG、DE,如圖①.直接寫出線段BG、DE的關(guān)系 ;
(2)將圖①中的正方形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖②,試判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論,若不成立,說明理由;
(3)將(1)中的正方形都改為矩形,如圖③,再將矩形CEFG繞點C按順時針方向旋轉(zhuǎn)任意角度,如圖④,若AB=a,BC=b;CE =ka,CG=kb,()試判斷(1)中的結(jié)論是否仍然成立?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com