【題目】若(2x-3yM=9y2-4x2,則M表示的式子為______

【答案】-3y-2x

【解析】

根據(jù)整式性質(zhì),將整式乘法變形成除法即可解題.

:∵(2x-3yM=9y2-4x2,

∴M=(9y2-4x2)÷(2x-3y

M=(3y+2x)(3y-2x)÷(2x-3y

M=-3y-2x

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P、Q是反比例函數(shù)y= 圖像上的兩點,PA⊥y軸于點A,QN⊥x軸于點N,作PM⊥x軸于點M,QB⊥y軸于點B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了調(diào)查居民的生活水平,有關部門對某居委會的50戶居民的家庭存款額進行了調(diào)查,數(shù)據(jù)(單位:萬元)如下:
1.7 3.5 2.3 6.4 2.0 1.9 6.7 4.8 5.0 4.7
2.3 3.4 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8
3.0 5.1 7.0 3.1 2.9 4.9 5.8 3.6 3.0 4.2
4.0 3.9 5.1 6.3 1.8 3.2 5.1 5.7 3.9 3.1
2.5 2.8 4.5 4.9 5.3 2.6 7.2 1.9 5.0 3.8
(1)這50個家庭存款額的最大值、最小值分別是多少?它們相差多少?
(2)填表:

存款額x(萬元)

劃記

戶數(shù)

1.0≤x<2.0

2.0≤x<3.0

3.0≤x<4.0

4.0≤x<5.0

5.0≤x<6.0

6.0≤x<7.0

7.0≤x<8.0


(3)根據(jù)上表談談這50戶家庭存款額的分布情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句寫成數(shù)學式子正確的是( )
A.9是81的算術(shù)平方根:
B.±6是36的平方根:
C.5是(﹣5)2的算術(shù)平方根:
D.﹣2是4的負的平方根:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=10cm,BC=30cm,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD與正方形OEFG中,點D和點F的坐標分別為(﹣3,2)和(1,﹣1),則這兩個正方形的位似中心的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尤秀同學遇到了這樣一個問題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設BC=a,AC=b,AB=c.

求證:

該同學仔細分析后,得到如下解題思路:

先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故,設PF=m,PE=n,用m,n把PA,PB分別表示出來,再在Rt△APE,Rt△BPF中利用勾股定理計算,消去m,n即可得證.

(1)請你根據(jù)以上解題思路幫尤秀同學寫出證明過程.

(2)利用題中的結(jié)論,解答下列問題:

在邊長為3的菱形ABCD中,O為對角線AC,BD的交點,E,F(xiàn)分別為線段AO,DO的中點,連接BE,CF并延長交于點M,BM,CM分別交AD于點G,H,如圖2所示,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算 = ,若a≠﹣1,b≠﹣1,則下列等式中不正確的是(
A. × =1
B. + =
C.( 2=
D. =1

查看答案和解析>>

同步練習冊答案