【題目】如圖,在中,和的平分線相交于點,過作,交于點,交于點.若,則線段的長為______.
【答案】2
【解析】
根據(jù)角平分線的定義可得∠DBF=∠FBC,∠ECF=∠FCB,由平行線的性質(zhì)可得∠DFB=∠FBC,∠EFC=∠FCB,等量代換可得∠DFB=∠DBF,∠EFC=∠ECF,根據(jù)等角對等邊可得到DF=DB,EF=EC,再由ED=DF+EF結(jié)合已知即可求得答案.
∵BF、CF分別是∠ABC和∠ACB的角平分線,
∴∠DBF=∠FBC,∠ECF=∠FCB,
∵DE∥ BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∴∠DFB=∠DBF,∠EFC=∠ECF,
∴DF=DB,EF=EC,
∵ED=DF+EF,,
∴EF=2,
∴EC=2
故答案為:2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣bx+2(﹣2≤b≤2),當(dāng)b從﹣2逐漸增加到2的過程中,它所對應(yīng)的拋物線的位置也隨之變動,下列關(guān)于拋物線的移動方向的描述中,正確的是( 。
A. 先往左上方移動,再往左下方移動
B. 先往左下方移動,再往左上方移動
C. 先往右上方移動,再往右下方移動
D. 先往右下方移動,再往右上方移動
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:
①abc<0;②2a﹣b<0;③a﹣b+c>0;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2與x軸交于A,B兩點,交y軸于點C,點C關(guān)于拋物線對稱軸對稱的點為D.
(1)求點D的坐標(biāo)及直線AD的解析式;
(2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過M作MN∥BD交線段AD于N點,點P是y軸上的動點,當(dāng)△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標(biāo);
(3)如圖2,線段AE在第一象限內(nèi)交BD于點E,其中tan∠EAB=,將拋物線向右水平移動,點A平移后的對應(yīng)點為點G;將△ABD繞點B逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是直線與坐標(biāo)軸的交點,直線過點,與軸交于點.
(1)求,,三點的坐標(biāo).
(2)當(dāng)點是的中點時,在軸上找一點,使的和最小,畫出點的位置,并求點的坐標(biāo).
(3)若點是折線上一動點,是否存在點,使為直角三角形,若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結(jié)論就是著名的勾股定理.請利用這個結(jié)論,完成下面活動:
一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____;
如圖①,于,求的長度;
如圖②,點在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)的點(保留痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個相似多邊形的面積比為,則周長的比為.”中,正確的個數(shù)有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,cosB=,點M是AB邊的中點,將△ABC繞著點M旋轉(zhuǎn),使點C與點A重合,點A與點D重合,點B與點E重合,得到△DEA,且AE交CB于點P,那么線段CP的長是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.
(1)猜想BG與EG的數(shù)量關(guān)系.并說明理由;
(2)延長DE,BA交于點H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com