【題目】如圖,在中,的平分線相交于點,過,交于點,交于點.,則線段的長為______

【答案】2

【解析】

根據(jù)角平分線的定義可得∠DBF=∠FBC,∠ECF=∠FCB,由平行線的性質(zhì)可得∠DFB=∠FBC,∠EFC=∠FCB,等量代換可得∠DFB=∠DBF,∠EFC=∠ECF,根據(jù)等角對等邊可得到DF=DBEF=EC,再由ED=DF+EF結(jié)合已知即可求得答案.

∵BF、CF分別是∠ABC∠ACB的角平分線,

∴∠DBF=∠FBC,∠ECF=∠FCB,

∵DE∥ BC,

∴∠DFB=∠FBC,∠EFC=∠FCB,

∴∠DFB=∠DBF,∠EFC=∠ECF,

∴DF=DB,EF=EC,

∵ED=DF+EF,

∴EF=2,

∴EC=2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣bx+2(﹣2≤b≤2),當(dāng)b從﹣2逐漸增加到2的過程中,它所對應(yīng)的拋物線的位置也隨之變動,下列關(guān)于拋物線的移動方向的描述中,正確的是( 。

A. 先往左上方移動,再往左下方移動

B. 先往左下方移動,再往左上方移動

C. 先往右上方移動,再往右下方移動

D. 先往右下方移動,再往右上方移動

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結(jié)論:

abc<0;2a﹣b<0;a﹣b+c>0;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結(jié)論有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2x軸交于A,B兩點,交y軸于點C,點C關(guān)于拋物線對稱軸對稱的點為D.

(1)求點D的坐標(biāo)及直線AD的解析式;

(2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過MMNBD交線段ADN點,點Py軸上的動點,當(dāng)△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標(biāo);

(3)如圖2,線段AE在第一象限內(nèi)交BD于點E,其中tanEAB=,將拋物線向右水平移動,點A平移后的對應(yīng)點為點G;將△ABD繞點B逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是直線與坐標(biāo)軸的交點,直線過點,與軸交于點.

(1),,三點的坐標(biāo).

(2)當(dāng)點的中點時,在軸上找一點,使的和最小,畫出點的位置,并求點的坐標(biāo).

(3)若點是折線上一動點,是否存在點,使為直角三角形,若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結(jié)論就是著名的勾股定理.請利用這個結(jié)論,完成下面活動:

一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____

如圖①,,求的長度;

如圖②,點在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)(保留痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個相似多邊形的面積比為,則周長的比為.”中,正確的個數(shù)有( )個

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AB=10,cosB=,點MAB邊的中點,將ABC繞著點M旋轉(zhuǎn),使點C與點A重合,點A與點D重合,點B與點E重合,得到DEA,且AECB于點P,那么線段CP的長是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,以ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.

(1)猜想BGEG的數(shù)量關(guān)系.并說明理由;

(2)延長DE,BA交于點H,其他條件不變,

①如圖2,若∠ADC=60°,求的值;

②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)

查看答案和解析>>

同步練習(xí)冊答案