【題目】有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在中,,是的角平分線,,分別是,上的點(diǎn).求證:四邊形是鄰余四邊形;
(2)如圖2,已知,點(diǎn)在的垂直平分線上,在邊上,是內(nèi)一點(diǎn), 連接,,,,若四邊形是鄰余四邊形,是鄰余線.
①與有什么位置關(guān)系?說(shuō)明理由.
②判斷形狀,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)①;②是等邊三角形.
【解析】
(1)方法1:通過(guò)等腰三角形三線合一得到,,進(jìn)而得到與互余,即得證.方法2:由等腰三角形性質(zhì)得到,由角平分線性質(zhì)得到,進(jìn)而得到,即得證;(2)①根據(jù)鄰余四邊形性質(zhì)可得到∠B=60°,與∠AED相等,故;②由垂直平分線性質(zhì)得到AB=AC,又∠B=60°,故△ABC為等邊三角形.
解:(1)方法1:,
是的角平分線,
,
,
,
與互余.
四邊形是鄰余四邊形;
方法2:,
,
是的角平分線,
,
四邊形是鄰余四邊形;
(2)①.
理由:四邊形是鄰余四邊形,
是鄰余線,
,
,
,
,
②是等邊三角形.
理由:點(diǎn)在的垂直平分線上,
,
又,
是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三角形ABC的面積為1cm2.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長(zhǎng)方形是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【發(fā)現(xiàn)證明】
如圖1,點(diǎn)E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關(guān)系.
小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,通過(guò)證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
【類比引申】
(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;
【聯(lián)想拓展】
(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九(3)班“2017年新年聯(lián)歡會(huì)”中,有一個(gè)摸獎(jiǎng)游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.
(1)現(xiàn)小芳有一次翻牌機(jī)會(huì),若正面是笑臉的就獲獎(jiǎng),正面是哭臉的不獲獎(jiǎng).她從中隨機(jī)翻開(kāi)一張紙牌,求小芳獲獎(jiǎng)的概率.
(2)如果小芳、小明都有翻兩張牌的機(jī)會(huì).小芳先翻一張,放回后再翻一張;小明同時(shí)翻開(kāi)兩張紙牌.他們翻開(kāi)的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎(jiǎng).他們獲獎(jiǎng)的機(jī)會(huì)相等嗎?通過(guò)樹(shù)狀圖分析說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定義:若雙曲線 (k>0)與它的其中一條對(duì)稱軸y=x相交于A、B兩點(diǎn),則線段AB的長(zhǎng)度為雙曲線 (k>0)的對(duì)徑.
(1)求雙曲線的對(duì)徑.
(2)若雙曲線 (k>0)的對(duì)徑是,求k的值.
(3)仿照上述定義,定義雙曲線 (k<0)的對(duì)徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩建筑物AB和CD的水平距離為30米,如圖所示,從A點(diǎn)測(cè)得太陽(yáng)落山時(shí),太陽(yáng)光線AC照射到AB后的影子恰好在CD的墻角時(shí)的角度∠ACB=60°,又過(guò)一會(huì)兒,當(dāng)AB的影子正好到達(dá)CD的樓頂D時(shí)的角度∠ADE=30°,DE⊥AB于E,則建筑物CD的高是多少米?(≈1.732,結(jié)果保留兩位有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點(diǎn),與x,y軸交于B,A兩點(diǎn),且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩個(gè)圓,的半徑等于籃球的半徑,的半徑等于一個(gè)乒乓球的半徑,現(xiàn)將兩個(gè)圓的周長(zhǎng)都增加米,則面積增加較多的圓是( )
A. B.
C. 兩圓增加的面積是相同的 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過(guò),,頂點(diǎn)為.
求該拋物線的表達(dá)方式及點(diǎn)的坐標(biāo);
將中求得的拋物線沿軸向上平移個(gè)單位,所得新拋物線與軸的交點(diǎn)記為點(diǎn).當(dāng)時(shí)等腰三角形時(shí),求點(diǎn)的坐標(biāo);
若點(diǎn)在中求得的拋物線的對(duì)稱軸上,聯(lián)結(jié),將線段繞點(diǎn)逆時(shí)針轉(zhuǎn)得到線段,若點(diǎn)恰好落在中求得的拋物線上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com