【題目】如圖,在中,為邊的中點(diǎn).點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度沿運(yùn)動到點(diǎn)停止,同時點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度沿折線運(yùn)動到點(diǎn)停止,當(dāng)點(diǎn)停止運(yùn)動時,點(diǎn)也停止運(yùn)動.當(dāng)點(diǎn)不與的頂點(diǎn)重合時,過點(diǎn)作交的邊于點(diǎn)以和為邊作,設(shè)點(diǎn)的運(yùn)動時間為(秒),的面積為(平方單位).
(1)當(dāng)點(diǎn)與點(diǎn)重合時,求的值;
(2)用含的代數(shù)式表示的長;
(3)求與之間的函數(shù)關(guān)系式;
(4)連結(jié)直接寫出將分成面積相等的兩部分時的值.
【答案】(1);(2);(3);(4).
【解析】
(1)先利用勾股定理計算出AC長,在算出動點(diǎn)Q的路徑長,再算出時間t;
(2)先分類討論,分別討論點(diǎn)Q在邊BC上和邊CD上,再利用相似三角形的性質(zhì)表示出的長;
(3)由(2)得的長,再分類討論得出所對的高的長度,根據(jù)平行四邊形的面積公式計算即可;
(4)若將分成面積相等的兩部分,則有線段PQ的中點(diǎn)E在直線BD上,再將點(diǎn)E的坐標(biāo)代入直線BD的解析式,解方程即可.
解:(1)
由勾股定理可得:
D為邊的中點(diǎn)
當(dāng)點(diǎn)與點(diǎn)重合時,
(2)當(dāng)點(diǎn)在邊BC上時,
此時,,即
即
當(dāng)點(diǎn)在邊CD上時,
此時,,即
即
綜上所述:.
(3)當(dāng)點(diǎn)在邊BC上,即時,
由(2)知
當(dāng)點(diǎn)在邊CD上,即時,
由(2)知,
即
綜上所述:.
(4)以B為坐標(biāo)原點(diǎn),AB所在直線為x軸,BC所在直線為y軸,建立如圖所致平面直角坐標(biāo)系,
當(dāng)點(diǎn)在邊BC上時,
由題設(shè)條件可知:,,,
易得:PQ中點(diǎn)E的坐標(biāo)為
直線BD的解析式為
若將分成面積相等的兩部分,
則此時點(diǎn)E在直線BD上,
將代入,得:
解得:
當(dāng)點(diǎn)在邊CD上時,
由題設(shè)條件可知:,,,
易得:PQ中點(diǎn)E的坐標(biāo)為
直線BD的解析式為
若將分成面積相等的兩部分,
則此時點(diǎn)E在直線BD上,
將代入,得:
解得:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣1,1),B(0,﹣2),C(1,0),點(diǎn)P(0,2)繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn)P1,點(diǎn)P1繞點(diǎn)B旋轉(zhuǎn)180°得到點(diǎn)P2,點(diǎn)P2繞點(diǎn)C旋轉(zhuǎn)180°得到點(diǎn)P3,點(diǎn)P3繞點(diǎn)A旋轉(zhuǎn)180°得到點(diǎn)P4,…,按此作法進(jìn)行下去,則點(diǎn)P2019的坐標(biāo)為( )
A.(-2,0)B.C.(2,-4)D.(-2,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn),點(diǎn),…點(diǎn)在函數(shù)的圖象上, 都是等腰直角三角形,斜邊都在軸上(是大于或等于2的正數(shù)數(shù)),則__________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8).動點(diǎn)M、N分別從O、B同時出發(fā),以每秒1個單位的速度運(yùn)動.其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動,點(diǎn)N沿BC向終點(diǎn)C運(yùn)動.過點(diǎn)N作NP⊥BC,交AC于P,連接MP.已知動點(diǎn)運(yùn)動了x秒.
(1)P點(diǎn)的坐標(biāo)為多少;(用含x的代數(shù)式表示)
(2)試求△MPA面積的最大值,并求此時x的值;
(3)請你探索:當(dāng)x為何值時,△MPA是一個等腰三角形?你發(fā)現(xiàn)了幾種情況?寫出你的研究成果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把如圖1所示的菱形稱為基本圖形,將此基本圖形不斷復(fù)制并平移,使得相鄰兩個基本圖形的一個頂點(diǎn)與對稱中心重合,得到的所有菱形都稱為基本圖形的特征圖形,顯然圖2中有3個特征圖形.
(1)觀察以上圖形并完成如表:
根據(jù)表中規(guī)律猜想,圖n(n≥2)中特征圖形的個數(shù)為 .(用含n的式子表示)
圖形名稱 | 基本圖形的個數(shù) | 特征圖形的個數(shù) |
圖1 | 1 | 1 |
圖2 | 2 | 3 |
圖3 | 3 | 7 |
圖4 | 4 | |
…… | …… | …… |
(2)若基本圖形的面積為2,則圖2中小特征圖形的面積是 ;圖2020中所有特征圖形的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著城際鐵路的開通,從甲市到乙市的高鐵里程比快里程縮短了90千米,運(yùn)行時間減少了8小時,已知甲市到乙市的普快列車?yán)锍虨?/span>1220千米,高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)若從甲市到乙市途經(jīng)丙市,且從甲市到丙市的高鐵里程為780千米.某日王老師要從甲市去丙市參加14:00召開的會議,如果他買了當(dāng)日10:00從甲市到丙市的高鐵票,而且從丙市高鐵站到會議地點(diǎn)最多需要0.5小時.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下,王老師能否在開會之前趕到會議地點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO沿x軸向右滾動到△AB1C1的位置,再到△A1B1C2的位置……依次進(jìn)行下去,若已知點(diǎn)A(4,0),B(0,3),則點(diǎn)C100的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,點(diǎn)E為邊AD上的一個動點(diǎn)(與點(diǎn)A,D不重合),,BE交對角線AC于點(diǎn)F,BM交于AC于點(diǎn)G,交CD于點(diǎn)M.
(1)求DE:CG的值;
(2)設(shè),,
①求y關(guān)于x的函數(shù)表達(dá)式及x的取值范圍.
②當(dāng)圖中點(diǎn)E,M關(guān)于對角線BD成軸對稱時,求y的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com