【題目】如圖,△ABC中,AB=AC,BD=CF,BE=CD,∠EDF=a,則下列結(jié)論正確的是( )
A. a+∠A=90° B. a+∠A=180° C. 2a+∠A=90° D. 2a+∠A=180°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,(M2,N2),∠BAC=30°,E為AB邊的中點,以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點的直線與直線;相交于點.
()求直線的表達(dá)式.
()過動點且垂于軸的直線與、的交點分別為,,當(dāng)點位于點上方時,寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當(dāng)秒時,判斷的形狀,并說明理由;
當(dāng)時,則______秒直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,BC=6cm,AC=8 cm,AB=10 cm. 現(xiàn)有一動點P,從A點出發(fā),沿著三角形的邊AC-CB-BA運動,回到A點停止,速度為1 cm/s,設(shè)運動時間為t s.
(1)當(dāng)t=_______時,△ABC的周長被線段AP平分為相等的兩部分.
(2)當(dāng)t=_______時,△APC的面積等于△ABC面積的一半.
(3)還有一個△DEF,∠E=90°,如圖②所示,DE=4cm,DF=5cm,∠D=∠A. 在△ABC的邊上,若另外有一個動點Q,與P 同時從A點出發(fā),沿著邊AB-BC-CA運動,回到點A停止. 在兩點運動過程中某一時刻,恰好△APQ與△DEF全等,則點Q的運動速度 cm/s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的有( )
①Rt△ABC中,已知兩邊長分別為3和4,則第三邊長為5;
②有一個內(nèi)角等于其他兩個內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖),圖由弦圖變化得到,它是由作個全等的直角三角形拼接而成,記圖中正方形,正方形,正方形的面積分別為、、,若,則的值是( )
A. 5 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=x+m(m≠0)與反比例函數(shù) 的圖象在同一平面直角坐標(biāo)系中是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com