精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是(  )

A. AF=CF B. ∠DCF=∠DFC

C. 圖中與AEF相似的三角形共有5個 D. tan∠CAD=

【答案】D

【解析】

ADBC,所以 A正確,不符合題意;過DDMBEACN,得到四邊形BMDE是平行四邊形,求出BM=DE=

BC,得到CN=NF,根據線段的垂直平分線的性質可得結論,故B正確,不符合題意;
根據相似三角形的判定即可求解,故C正確,不符合題意;
BAE∽△ADC,得到CDAD的大小關系,根據正切函數可求tanCAD的值,故D錯誤,符合題意.

A.ADBC,

AEFCBF,

,故A正確,不符合題意;

B. DDMBEACN

DEBM,BEDM,

∴四邊形BMDE是平行四邊形,

BM=CM

CN=NF,

BEAC于點F,DMBE,

DNCF

DF=DC,

∴∠DCF=DFC,故B正確,不符合題意;

C. 圖中與AEF相似的三角形有ACD,BAFCBF,CAB,ABE共有5個,故C正確,不符合題意;

D. AD=a,AB=b,BAEADC,

tanCAD D錯誤,符合題意.

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:r如圖,在梯形ABCD中,AD∥BC∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,弦AD,BC相交于點E,連接OE,已知AD=BC,ADCB.

(1)求證:AB=CD;

(2)如果⊙O的直徑為10,DE=1,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點D、E分別在△ABC的邊AC、BC上,線段BD與AE交于點F,且CDCA=CECB.

(1)求證:∠CAE=∠CBD;

(2)若,求證:ABAD=AFAE.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠A70°.按下列步驟作圖:①分別以點B,C為圓心,適當長為半徑畫弧,分別交BA,BC,CA,CB于點D,E,F,G;②分別以點D,E為圓心,大于DE為半徑畫弧,兩弧交于點M;③分別以點F,G為圓心,大于FG為半徑畫弧,兩弧交于點N;④作射線BM交射線CN于點O.則∠BOC的度數是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若買3根跳繩和6個毽子共72元;買1根跳繩和5個毽子共36元.

1)跳繩、毽子的單價各是多少元?

2)元旦促銷期間,所有商品按同樣的折數打折銷售,買10根跳繩和10個毽子只需180元,問商品按原價的幾折銷售?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.

(1)用含x的代數式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設=y,求y關于x的函數關系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應點A的坐標是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市某中學舉行中國夢校園好聲音歌手大賽,高、初中部根據初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.

1)根據圖示填寫下表;

平均數(分)

中位數(分)

眾數(分)

初中部

85

高中部

85

100

2)結合兩隊成績的平均數和中位數,分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

同步練習冊答案