【題目】4張相同的卡片上分別寫有數(shù)字1、2、3、4,將卡片背面朝上,洗勻后從中任意抽取1張,將卡片上的數(shù)字作為被減數(shù);一只不透明的袋子中裝有標號為1、2、3的3個小球,這些球除標號外都相同,攪勻后從中任意摸出1個球,將摸到的球的標號作為減數(shù).
(1)求這兩個數(shù)的差為0的概率;
(2)游戲規(guī)則規(guī)定:當抽到的這兩個數(shù)的差為非負數(shù)時,甲獲勝;否則,乙獲勝.這樣的規(guī)則公平嗎?如果不公平,請設(shè)計一個公平的規(guī)則,并說明理由.
【答案】(1)(兩個數(shù)的差為0);(2)游戲不公平,設(shè)計規(guī)則:當抽到的這兩個數(shù)的差為正數(shù)時,甲獲勝;否則,乙獲勝,理由見解析.
【解析】
(1)利用列表法列舉出所有可能,進而求出概率;
(2)利用概率公式進而得出甲、乙獲勝的概率即可得出答案.
(1)用列表法表示為:
被減數(shù) 差 減數(shù) | 1 | 2 | 3 | 4 |
1 | 0 | 1 | 2 | 3 |
2 | -1 | 0 | 1 | 2 |
3 | -2 | -1 | 0 | 1 |
由列表法或樹狀圖可知:共有12種等可能的結(jié)果,其中“兩個數(shù)的差為0”的情況有3種,∴(兩個數(shù)的差為0);
(2)由列表法或樹狀圖可知:共有12種等可能的結(jié)果,其中“兩個數(shù)的差為非負數(shù)”的情況有9種,∴(兩個數(shù)的差為非負數(shù));其中“兩個數(shù)的差為負數(shù)”的情況有3種,∴(兩個數(shù)的差為負數(shù)),∴游戲不公平.
設(shè)計規(guī)則:當抽到的這兩個數(shù)的差為正數(shù)時,甲獲勝;否則,乙獲勝.因為(兩個數(shù)的差為正數(shù)),∴(兩個數(shù)的差為非正數(shù)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊B′C交CD邊于點G,如果當AB′=B′G時量得AD=7,CG=4,連接BB′、CC′,那么=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點E是BC邊的中點,動點M在CD邊上運動,以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,∠BAD=60°,則PA的最小值是( 。
A. B. 2 C. 2﹣2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y1=x2﹣2x﹣3先向左平移1個單位,再向上平移4個單位后,與拋物線y2=ax2+bx+c重合,現(xiàn)有一直線y3=2x+3與拋物線y2=ax2+bx+c相交.當y2≤y3時自變量x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)圖象的對稱軸為,與軸交于點,與軸交于點、點,則①二次函數(shù)的最大值為;②;③;④當時,,其中正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明從點A走到點D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.
(1)求證:BF=CD;
(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com