【題目】用適當方法解下列方程:
(1)
(x+1)2=25;
(2)x2+2x﹣1=0.
【答案】
(1)
解:∵(x+1)2=100,
∴x+1=10或x+1=﹣10,
解得:x=9或x=﹣11
(2)
解:∵x2+2x=1,
∴x2+2x+1=1+1,即(x+1)2=2,
則x+1=± ,
∴x=﹣1
【解析】(1)利用直接開平方法求解可得;(2)配方法求解可得.
【考點精析】根據題目的已知條件,利用直接開平方法和配方法的相關知識可以得到問題的答案,需要掌握方程沒有一次項,直接開方最理想.如果缺少常數項,因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時不為零,因式分解或配方,也可直接套公式,因題而異擇良方;左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題.
科目:初中數學 來源: 題型:
【題目】某工廠甲、乙兩個車間同時開始生產某種產品,產品總任務量為m件,開始甲、乙兩個車間工作效率相同.乙車間在生產一段時間后,停止生產,更換新設備,之后工作效率提高.甲車間始終按原工作效率生產.甲、乙兩車間生產的產品總件數y與甲的生產時間x(時)的函數圖象如圖所示.
(1)甲車間每小時生產產品 件,a= .
(2)求乙車間更換新設備之后y與x之間的函數關系式,并求m的值.
(3)若乙車間在開始更換新設備時,增加兩名工作人員,這樣可便更換設備時間減少0.5小時,并且更換后工作效率提高到原來的2倍,那么兩個車間完成原任務量需幾小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數在第一象限內的圖象交于點B(m,n),連結OB.若S△AOB=6,S△BOC=2.
(1)求一次函數的表達式;
(2)求反比例函數的表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將正方形ABCD(如圖1)作如下劃分:
第1次劃分:分別連接正方形ABCD對邊的中點(如圖2),得線段HF和EG,它們交于點M,此時圖2中共有5個正方形;
第2次劃分:將圖2左上角正方形AEMH再作劃分,得圖3,則圖3中共有9個正方形;
(1)若每次都把左上角的正方形一次劃分下去,則第100次劃分后,圖中共有______個正方形;
(2)繼續(xù)劃分下去,第幾次劃分后能有805個正方形?寫出計算過程.
(3)能否將正方形性ABCD劃分成有2018個正方形的圖形?如果能,請算出是第幾次劃分,如果不能,需說明理由.
(4)如果設原正方形的邊長為1,通過不斷地分割該面積為1的正方形,并把數量關系和幾何圖形巧妙地結合起來,可以很容易得到一些計算結果,試著探究求出下面表達式的結果吧.
計算.(直接寫出答案即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為發(fā)展校園足球運動,某城區(qū)四校決定聯合購買一批足球運動裝備.市場調查發(fā)現:甲、乙兩商場以同樣的價格出售同種品牌的足球服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少元;
(2)若城區(qū)四校聯合購買100套隊服和a(a>10)個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花發(fā)費用;
(3)在(2)的條件下,若a=60,假如你是本次購買任務的負責人,你認為到甲、乙哪家商場購買比較合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解學生的課外閱讀情況,王老師隨機抽查部分學生,并對其暑假期間的課外閱讀量進行統(tǒng)計分析,繪制成如圖所示但不完整的統(tǒng)計圖.已知抽查的學生在暑假期間閱讀量為2本的人數占抽查總人數的20%,根據所給出信息,解答下列問題:
(1)求被抽查學生人數并直接寫出被抽查學生課外閱讀量的中位數;
(2)將條形統(tǒng)計圖補充完整;
(3)若規(guī)定:假期閱讀3本及3本以上課外書者為完成假期作業(yè),據此估計該校1500名學生中,完成假期作業(yè)的有多少名學生?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com