已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點(diǎn),以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).
(1)當(dāng)正方形的頂點(diǎn)F恰好落在對(duì)角線AC上時(shí),求BE的長(zhǎng);
(2)將(1)問(wèn)中的正方形BEFG沿BC向右平移,記平移中的正方形BEFC為正方形B′EFG,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點(diǎn)M,連接B′D,B′M,DM,是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)問(wèn)的平移過(guò)程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

【答案】分析:(1)首先設(shè)正方形BEFG的邊長(zhǎng)為x,易得△AGF∽△ABC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得BE的長(zhǎng);
(2)首先利用△MEC∽△ABC與勾股定理,求得B′M,DM與B′D的平方,然后分別從若∠DB′M=90°,則DM2=B′M2+B′D2,若∠DB′M=90°,則DM2=B′M2+B′D2,若∠B′DM=90°,則B′M2=B′D2+DM2去分析,即可得到方程,解方程即可求得答案;
(3)分別從當(dāng)0≤t≤時(shí),當(dāng)<t≤2時(shí),當(dāng)2<t≤時(shí),當(dāng)<t≤4時(shí)去分析求解即可求得答案.
解答:解:(1)如圖①,
設(shè)正方形BEFG的邊長(zhǎng)為x,
則BE=FG=BG=x,
∵AB=3,BC=6,
∴AG=AB-BG=3-x,
∵GF∥BE,
∴△AGF∽△ABC,
,
,
解得:x=2,
即BE=2;

(2)存在滿足條件的t,
理由:如圖②,過(guò)點(diǎn)D作DH⊥BC于H,
則BH=AD=2,DH=AB=3,
由題意得:BB′=HE=t,HB′=|t-2|,EC=4-t,
∵EF∥AB,
∴△MEC∽△ABC,
,即,
∴ME=2-t,
在Rt△B′ME中,B′M2=ME2+B′E2=22+(2-t)2=t2-2t+8,
在Rt△DHB′中,B′D2=DH2+B′H2=32+(t-2)2=t2-4t+13,
過(guò)點(diǎn)M作MN⊥DH于N,
則MN=HE=t,NH=ME=2-t,
∴DN=DH-NH=3-(2-t)=t+1,
在Rt△DMN中,DM2=DN2+MN2=t2+t+1,
(Ⅰ)若∠DB′M=90°,則DM2=B′M2+B′D2
t2+t+1=(t2-2t+8)+(t2-4t+13),
解得:t=
(Ⅱ)若∠B′MD=90°,則B′D2=B′M2+DM2,
即t2-4t+13=(t2-2t+8)+(t2+t+1),
解得:t1=-3+,t2=-3-(舍去),
∴t=-3+;
(Ⅲ)若∠B′DM=90°,則B′M2=B′D2+DM2,
即:t2-2t+8=(t2-4t+13)+(t2+t+1),
此方程無(wú)解,
綜上所述,當(dāng)t=或-3+時(shí),△B′DM是直角三角形;

(3)①如圖③,當(dāng)F在CD上時(shí),EF:DH=CE:CH,
即2:3=CE:4,
∴CE=
∴t=BB′=BC-B′E-EC=6-2-=,
∵M(jìn)E=2-t,
∴FM=t,
當(dāng)0≤t≤時(shí),S=S△FMN=×t×t=t2,
②如圖④,當(dāng)G在AC上時(shí),t=2,
∵EK=EC•tan∠DCB=EC•=(4-t)=3-t,
∴FK=2-EK=t-1,
∵NL=AD=,
∴FL=t-
∴當(dāng)<t≤2時(shí),S=S△FMN-S△FKL=t2-(t-)(t-1)=-t2+t-;
③如圖⑤,當(dāng)G在CD上時(shí),B′C:CH=B′G:DH,
即B′C:4=2:3,
解得:B′C=,
∴EC=4-t=B′C-2=
∴t=,
∵B′N=B′C=(6-t)=3-t,
∵GN=GB′-B′N=t-1,
∴當(dāng)2<t≤時(shí),S=S梯形GNMF-S△FKL=×2×(t-1+t)-(t-)(t-1)=-t2+2t-,
④如圖⑥,當(dāng)<t≤4時(shí),
∵B′L=B′C=(6-t),EK=EC=(4-t),B′N=B′C=(6-t),EM=EC=(4-t),
S=S梯形MNLK=S梯形B′EKL-S梯形B′EMN=-t+
綜上所述:
當(dāng)0≤t≤時(shí),S=t2,
當(dāng)<t≤2時(shí),S=-t2+t-;
當(dāng)2<t≤時(shí),S=-t2+2t-,
當(dāng)<t≤4時(shí),S=-t+
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)、直角梯形的性質(zhì)以及勾股定理等知識(shí).此題難度較大,注意數(shù)形結(jié)合思想、方程思想與分類討論思想的應(yīng)用,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期相交線與平行線專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫(xiě)出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期平移專項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫(xiě)出t的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案