如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,則此時大孔的水面寬度EF長為( )
A.
B.
C.12米
D.10米
【答案】分析:根據(jù)題意,可以得到A、B、M的坐標,設出函數(shù)關系式,待定系數(shù)求解函數(shù)式.根據(jù)NC的長度,得出函數(shù)的y坐標,代入解析式,即可得出E、F的坐標,進而得出答案.
解答:解:由題意得,M點坐標為(0,6),A點坐標為(-10,0),B點坐標為(10,0),
設中間大拋物線的函數(shù)式為y=-ax2+bx+c,
代入三點的坐標得到,
解得
∴函數(shù)式為y=-
∵NC=4.5米,
∴令y=4.5米,
代入解析式得x1=5,x2=-5,
∴可得EF=5-(-5)=10米.
故選擇D.
點評:①本題考查了二次函數(shù)的運用,根據(jù)函數(shù)的性質解題.
②解決此類問題都要結合圖形,數(shù)形結合思想是基本的思想,需要掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,則此時大孔的水面寬度EF長為( 。
A、10
3
B、6
3
C、12米
D、10米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20m,頂點M距水面6m(即MO=6m),小孔頂點N距水面4.5m(即NC=4.5m).當水位上漲剛好淹沒小孔時,借助圖中的平面直角坐標系,則此時大孔的水面寬度EF為
 
m.

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年九年級(下)同步測試期末測試(26~29章)(解析版) 題型:解答題

如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年吉林省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•吉林)如圖,三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時,大孔水面寬度AB=20米,頂點M距水面6米(即MO=6米),小孔頂點N距水面4.5米(即NC=4.5米).當水位上漲剛好淹沒小孔時,借助圖中的直角坐標系,求此時大孔的水面寬度EF.

查看答案和解析>>

同步練習冊答案