【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2,則稱點P′是點P關于⊙O的“反演點”.
如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關于⊙O的反演點,求A′B′的長.
【答案】2
【解析】試題分析:設OA交⊙O于C,連結(jié)B′C,如圖2,根據(jù)新定義計算出OA′=2,OB′=4,則點A′為OC的中點,點B和B′重合,再證明△OBC為等邊三角形,則B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定義可求A′B′的長.
試題解析:設OA交⊙O于C,連結(jié)B′C,如圖2,
∵OA′OA=42,
而r=4,OA=8,
∴OA′=2,
∵OB′OB=42,
∴OB′=4,即點B和B′重合,
∵∠BOA=60°,OB=OC,
∴△OBC為等邊三角形,
而點A′為OC的中點,
∴B′A′⊥OC,
在Rt△OA′B′中,sin∠A′OB′=,
∴A′B′=4sin60°=.
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,在平面直角坐標系中,直線與軸、軸分別交于A、B兩點,動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,當其中一點到達終點時,另一點也隨之停止運動.設點P運動的時間為t(秒).
(1)直接寫出A、B兩點的坐標.
(2)當△APQ與△AOB相似時,求t的值.
(3)設△APQ的面積為S(平方單位),求S與t之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標系中,矩形ABCO的OA邊在軸上,OC邊在軸上,且B點坐標為(4,3).動點M、N分別從點O、B同時出發(fā),以1單位/秒的速度運動(點M沿OA向終點A運動,點N沿BC向終點C運動),過點N作NP∥AB交AC于點P,連結(jié)MP.
(1)直接寫出OA、AB的長度;
(2)試說明△CPN∽△CAB;
(3)在兩點的運動過程中,請求出ΔMPA的面積S與運動時間的函數(shù)關系式;
(4)在運動過程中,△MPA的面積S是否存在最大值?若存在,請求出當為何值時有最大值,并求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市在建的天星橋水庫是以灌溉和城市供水為主的綜合型水利工程,建成后,每年可向巴城供水593萬立方米,將593萬立方米用科學記數(shù)法表示為( )立方米.
A.0.593×107
B.5.93×106
C.5.93×102
D.5.93×107
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】巴中市某樓盤準備以每平方米5000元的均價對外銷售,由于有關部門關于房地產(chǎn)的新政策出臺后,部分購房者持幣觀望,房地產(chǎn)開發(fā)商為了加快資金周轉(zhuǎn),對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售,若兩次下調(diào)的百分率相同,求平均每次下調(diào)的百分率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面不是平行線的判定定理的是( )
A. 在同一平面內(nèi),沒有公共點的兩條直線叫做平行線
B. 同位角相等,兩直線平行
C. 內(nèi)錯角相等,兩直線平行
D. 同旁內(nèi)角互補,兩直線平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知平行四邊形ABCD,下列條件中,不能判定這個平行四邊形為矩形的是( 。
A. ∠A=∠B B. ∠A=∠C C. AC=BD D. AB⊥BC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com