【題目】如圖,已知四邊形ABCD是矩形,點P在BC邊的延長線上,且PD=BC,⊙A經(jīng)過點B,與AD邊交于點E,連接CE .
(1)求證:直線PD是⊙A的切線;
(2)若PC=2,sin∠P=,求圖中陰影部份的面積(結(jié)果保留無理數(shù)).
【答案】(1)見解析;(2)20-4π.
【解析】分析:(1)過點A作AH⊥PD,垂足為H,只要證明AH為半徑即可.
(2)分別算出Rt△CED的面積,扇形ABE的面積,矩形ABCD的面積即可.
詳解:(1)證明:如圖,過A作AH⊥PD,垂足為H,
∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC,∠PCD=∠BCD=90°,
∴∠ADH=∠P,∠AHD=∠PCD=90°,
又PD=BC,∴AD=PD,
∴△ADH≌△DPC,∴AH=CD,
∵CD=AB,且AB是⊙A的半徑,
∴AH=AB,即AH是⊙A的半徑,
∴PD是⊙A的切線.
(2)如圖,在Rt△PDC中,∵sin∠P=,PC=2 ,
令CD=2x,PD=3x,由由勾股定理得:(3x)2-(2x)2=(2)2,
解得:x=2,∴CD=4,PD=6,
∴AB=AE=CD=4,AD=BC=PD=6,DE=2,
∵矩形ABCD的面積為6×4=24,Rt△CED的面積為×4×2=4,
扇形ABE的面積為π×42=4π,
∴圖中陰影部份的面積為24-4-4π=20-4π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具廠生產(chǎn)一種餐桌和椅子,餐桌每張定價為元,椅子每把定價為元,廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:
方案一:每買一張餐桌就贈送一把椅子;
方案二:餐桌和椅子都按定價的付款.
某餐廳計劃添置張餐桌和把椅子.
(1)若,請用含的代數(shù)式分別把兩種方案的費(fèi)用表示出來.
(2)已知,如果兩種方案可以同時使用,請幫助餐廳設(shè)計一種最省錢的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人民商場準(zhǔn)備購進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價比乙種牛奶的進(jìn)價每件少5元,其用90元購進(jìn)甲種牛奶的數(shù)量與用100元購進(jìn)乙種牛奶的數(shù)量相同.
(1)求甲種牛奶、乙種牛奶的進(jìn)價分別是多少元?
(2)若該商場購進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場甲種牛奶的銷售價格為49元,乙種牛奶的銷售價格為每件55元,則購進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價﹣進(jìn)價)等于371元,請通過計算求出該商場購進(jìn)甲、乙兩種牛奶各自多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,動點P在∠ABC的平分線BD上,動點M在BC邊上,若BC=3,∠ABC=45°,則PM+PC的最小值是( )
A. 2 B. C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機(jī)抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為_____,“活動時間為4天”的扇形所對圓心角的度數(shù)為_____°,該校初一學(xué)生的總?cè)藬?shù)為______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果該市共有初一學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點對應(yīng)的有理數(shù)分別為10和15,點P從點A出發(fā),以每秒1個單位長度的速度沿數(shù)軸正方向運(yùn)動,點Q同時從原點O出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)0<t<5時,用含t的式子填空:
BP=_______,AQ=_______;
(2)當(dāng)t=2時,求PQ的值;
(3)當(dāng)PQ=AB時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的四個頂點分別在菱形ABCD的四條邊上,BE=BF,將△AEH, △CFG分別沿EH,FG折疊,當(dāng)重疊部分為菱形且面積是菱形ABCD面積的時,則為( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在同一條直線上,M,N分別為BE,CD的中點.
(1)求證:△ABE≌ACD;
(2)判斷△AMN的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com