加試題
(1)已知a+a-1=3,則
a2
a4-a2+1
______.
(2)如圖,在△ABC中,AB=AC,D、E、F分別在BC、AC、AB上,BD=CE,CD=BF,則∠EDF=______
A、90°-
1
2
∠A
B、90°-∠A C、180°-∠A D、180°-2∠A
(3)安岳A地有檸檬100噸,B地有檸檬80噸,計(jì)劃送往甲、乙兩廠深加工,甲廠需要檸檬110噸,乙廠需要檸檬70噸,從A、B兩地到甲、乙兩廠的路程和運(yùn)費(fèi)如下表:
路程(千米)運(yùn)費(fèi)(元/噸.千米)
A地B地A地B地
甲廠20151212
乙廠2520108
①若A地運(yùn)往甲廠檸檬x噸,請(qǐng)寫出將所有檸檬運(yùn)往甲、乙兩廠的總運(yùn)費(fèi)y(元)與x噸的函數(shù)關(guān)系式;
②當(dāng)A、B兩地運(yùn)往甲、乙兩廠多少噸檸檬時(shí),總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
(1)∵a+a-1=3,
∴a2+
1
a2
=7.
a2
a4-a2+1
的倒數(shù)為:a2+
1
a2
-1,
∴a2+
1
a2
-1=7-1=6,
∴原式的值為:
1
6

故答案為:
1
6
;
(2)∵AB=AC,
∴∠B=∠C.
在△△BDE和△CED中,
BD=CE
∠B=∠C
BF=CD
,
∴△BDE≌△CED(SAS),
∴∠BFD=∠CDE.
∵∠FDC=∠B+∠BFD,
∴∠FDC-∠EDC=∠B,
即∠FDE=∠B,
∵∠B+∠C=180°-∠A,
∠B=90°-
1
2
∠A

∠FDE=90°-
1
2
∠A

故答案為:90°-
1
2
∠A

(3)①設(shè)A地運(yùn)往甲廠檸檬x噸,則A地運(yùn)往乙廠(100-x)噸,B地運(yùn)往甲廠(110-x)噸,B地運(yùn)往乙廠(x-30)噸,由題意得:
y=20×12x+10×25(100-x)+12×15(110-x)+20×8(x-30),
y=-30x+40000,
②由題意,得
x≥0
100-x≥0
110-x≥0
x-30≥0
,
解得:30≤x≤100.
∵y=-30x+40000,
∴k=-30<0,
∴y隨x的增大而減小,
∴當(dāng)x=100時(shí),y最小=28000.
∴設(shè)A地運(yùn)往甲廠檸檬100噸,則A地運(yùn)往乙廠0噸,B地運(yùn)往甲廠10噸,B地運(yùn)往乙廠70噸.其運(yùn)費(fèi)最少為28000元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線y=1.5x-3分別交x,y軸于A、B兩點(diǎn),O是原點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)求△AOB的面積;
(3)過△AOB的頂點(diǎn)能不能畫出直線把△AOB分成面積相等的兩部分?若能,可以畫出幾條?請(qǐng)任選一條求出該直線所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線L的解析式為y=-3x+3,且L與x軸交于點(diǎn)D,直線m經(jīng)過點(diǎn)A、B,直線L、m交于點(diǎn)C.
(1)求直線m的解析式;
(2)在直線m上存在異于點(diǎn)C的點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)B、C在x軸的負(fù)半軸上,點(diǎn)A在y軸的負(fù)半軸上,以AC為直徑的圓與AB的延長(zhǎng)線交于點(diǎn)D,CD=AO,如果AO>BO,且AO、BO是關(guān)于x的二次方程x2-14x+48=0的兩個(gè)根.
(1)求點(diǎn)D的坐標(biāo);
(2)定義:在直角坐標(biāo)系中,有點(diǎn)M(m,n),對(duì)于直線y=kx+b,當(dāng)x=m時(shí),y=km+b>n,則稱點(diǎn)M在直線下方;當(dāng)x=m時(shí),y=km+b=n,則稱點(diǎn)M在直線上;當(dāng)x=m時(shí),y=km+b<n,則稱點(diǎn)M在直線上方.
請(qǐng)你根據(jù)上述定義解決下列問題:
若點(diǎn)P在直徑AC所在直線上,且AC=4AP,直線l經(jīng)過點(diǎn)P和Q(6,-16),請(qǐng)你判斷點(diǎn)D和直線l的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拖拉機(jī)剛開始工作時(shí),油箱中有40升油,且工作每小時(shí)耗油5升.
(1)請(qǐng)寫出拖拉機(jī)郵箱中的余油量Q(升)與工作時(shí)間t(小時(shí))的函數(shù)關(guān)系式;
(2)求出自變量t的取值范圍;
(3)畫出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

南京至上海的滬寧高速公路長(zhǎng)約300千米.甲、兩車同時(shí)分別從距南京240千米、60千米的入口行駛上滬寧高速上正常行駛.甲車駛往南京、乙車駛往上海.甲車在行駛過程中速度始終不變.甲車離南京(滬寧高速公路南京起點(diǎn))的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示.
(1)求出甲車離南京的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)表達(dá)式;
(2)乙車若以60千米/時(shí)的速度勻速行駛,1小時(shí)后兩車相距多少千米
(3)乙車按(2)中狀態(tài)行駛與甲車相遇后,速度改為a千米/時(shí),結(jié)果兩車同時(shí)到達(dá)滬寧高速南京、上海起點(diǎn),求乙車變化后的速度a;并在如圖所示的直角坐標(biāo)系中,畫出乙離南京的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次運(yùn)輸任務(wù)中,一輛汽車將一批貨物從甲地運(yùn)往乙地,到達(dá)乙地卸貸后,休息一段時(shí)間后返回.設(shè)汽車從甲地出發(fā)x小時(shí),汽車距甲地的距離為y米,y與x的函數(shù)圖象如圖所示.根據(jù)圖象信息,解答下列問題:
(1)若設(shè)汽車距乙地距離為y1,畫出y1與x的圖象.
(2)若設(shè)汽車的路程為y2,畫出y2與x的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某服裝廠批發(fā)應(yīng)季T恤衫,其單價(jià)y(元)與批發(fā)數(shù)量x(件)(x為正整數(shù))之間的函數(shù)關(guān)系如圖所示.
(1)直接寫出y與x的函數(shù)關(guān)系式;
(2)一個(gè)批發(fā)商一次購進(jìn)200件T恤衫,所花的錢數(shù)是多少元?(其他費(fèi)用不計(jì));
(3)若每件T恤衫的成本價(jià)是45元,當(dāng)10O<X≤500件(x為正整數(shù))時(shí),求服裝廠所獲利潤(rùn)w(元)與x(件)之間的函數(shù)關(guān)系式,并求一次批發(fā)多少件時(shí)所獲利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一輛汽車和一輛摩托車分別從A,B兩地去同一城市,它們離A地的路程隨時(shí)間變化的圖象如圖所示.則下列結(jié)論:
(1)摩托車比汽車晚到1h;
(2)A,B兩地的路程為20km;
(3)摩托車的速度為45km/h,汽車的速度為60km/h;
(4)汽車出發(fā)1小時(shí)后與摩托車相遇,此時(shí)距B地40千米;
(5)相遇前摩托車的速度比汽車的速度快.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案