【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,EFB=60°,則矩形ABCD的面積是【 】

A.12 B. 24 C. 12 D. 16

【答案】 D。

解析如圖,連接BE,

在矩形ABCD中,ADBC,EFB=60°,

∴∠AEF=180°-EFB=180°-60°=120°,DEF=EFB=60°。

把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,

∴∠BEF=DEF=60°。

∴∠AEB=AEF-BEF=120°-60°=60°。

在RtABE中,AB=AEtanAEB=2tan60°=2

AE=2,DE=6,AD=AE+DE=2+6=8。

矩形ABCD的面積=ABAD=2×8=16。故選D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫(xiě)出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,點(diǎn).

1)若,求得度數(shù);

2)若,,求邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.

(1)出發(fā)2秒后,求PQ的長(zhǎng);

(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長(zhǎng)線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某藥品研究所開(kāi)發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體試驗(yàn),測(cè)得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時(shí)間x小時(shí)之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).

(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數(shù)關(guān)系式.
(2)問(wèn)血液中藥物濃度不低于4微克/毫升的持續(xù)時(shí)間多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E、F在四邊形ABCD的對(duì)角線BD所在的直線上,且BE=DF,AECF,請(qǐng)?jiān)偬砑右粋(gè)條件(不要在圖中再增加其它線段和字母),能證明四邊形ABCD是平行四邊形,并證明你的想法.

你所添加的條件:____________________________________;

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請(qǐng)你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個(gè)數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案