【題目】某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表:

進(jìn)價(jià)(元/部)

4000

2500

售價(jià)(元/部)

4300

3000

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需15.5萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬(wàn)元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).

【答案】
(1)解:設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲種手機(jī)x部,乙種手機(jī)y部,由題意,得

,

解得:

答:商場(chǎng)計(jì)劃購(gòu)進(jìn)甲種手機(jī)20部,乙種手機(jī)30部;


(2)解:設(shè)甲種手機(jī)減少a部,則乙種手機(jī)增加2a部,由題意,得

0.4(20﹣a)+0.25(30+2a)≤16,

解得:a≤5.

設(shè)全部銷售后獲得的毛利潤(rùn)為W萬(wàn)元,由題意,得

W=0.03(20﹣a)+0.05(30+2a)

=0.07a+2.1

∵k=0.07>0,

∴W隨a的增大而增大,

∴當(dāng)a=5時(shí),W最大=2.45.

答:當(dāng)該商場(chǎng)購(gòu)進(jìn)甲種手機(jī)15部,乙種手機(jī)40部時(shí),全部銷售后獲利最大.最大毛利潤(rùn)為2.45萬(wàn)元.


【解析】(1)設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲種手機(jī)x部,乙種手機(jī)y部,根據(jù)兩種手機(jī)的購(gòu)買金額為15.5萬(wàn)元和兩種手機(jī)的銷售利潤(rùn)為2.1萬(wàn)元建立方程組求出其解即可;(2)設(shè)甲種手機(jī)減少a部,則乙種手機(jī)增加2a部,表示出購(gòu)買的總資金,由總資金部超過(guò)16萬(wàn)元建立不等式就可以求出a的取值范圍,再設(shè)銷售后的總利潤(rùn)為W元,表示出總利潤(rùn)與a的關(guān)系式,由一次函數(shù)的性質(zhì)就可以求出最大利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:(a≠0),即a的負(fù)P次冪等于ap次冪的倒數(shù).例:

(1)計(jì)算:__;__

(2)如果,那么p=__;如果,那么a=__

(3)如果,且a、p為整數(shù),求滿足條件的a、p的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C的坐標(biāo)是1,1,那么點(diǎn)A、B、D的坐標(biāo)分別為:A______, _____),B______, _____),D______, _____).其中,橫坐標(biāo)相等的點(diǎn)有___________,__________.A、BCD四個(gè)點(diǎn)組成的圖形是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過(guò)70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過(guò)了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格MNPQ中,每個(gè)小方格的邊長(zhǎng)都相等,正方形ABCD的頂點(diǎn)在正方形MNPQ4條邊的小方格頂點(diǎn)上.

(1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個(gè)小方格的邊長(zhǎng)為1,求:

①△ABQBCM,CDN,ADP的面積;

②正方形ABCD的面積.

(2)設(shè)MBa,BQb,利用這個(gè)圖形中的直角三角形和正方形的面積關(guān)系,你能驗(yàn)證已學(xué)過(guò)的哪一個(gè)數(shù)學(xué)公式或定理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;
(2)直接寫(xiě)出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,BC= .將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至矩形AB′C′D′,使得點(diǎn)B′恰好落在對(duì)角線BD上,連接DD′,則DD′的長(zhǎng)度為(
A.
B.
C. +1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與思考:一張邊長(zhǎng)為a的正方形桌面,因?yàn)閷?shí)際需要,需將正方形邊長(zhǎng)增加b,從而得到一個(gè)更大的正方形,木工師傅設(shè)計(jì)了如圖所示的方案:

1)方案中大正方形的邊長(zhǎng)都是   ,所以面積為   ;

2)小明還發(fā)現(xiàn):方案中大正方形的面積還可以用四塊小四邊形的面積和來(lái)表示   

3)你有什么發(fā)現(xiàn),請(qǐng)用數(shù)學(xué)式子表達(dá)   

4)利用(3)的結(jié)論計(jì)算20.182+2×20.18×19.82+19.822的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案