【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為(2,9),與y軸交于點A(0,5),與x軸交于點E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當(dāng)點P在何位置時,線段PD最長?并求出最大值;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A,E,N,M為頂點的四邊形是平行四邊形,求點M的坐標(biāo).(請直接寫出結(jié)果)
【答案】(1)y=﹣x2+4x+5;(2)x=時,PD的最大值為;(3)點M(3,8)或(1,8).
【解析】
(1)設(shè)出拋物線解析式,用待定系數(shù)法求解即可;
(2)先求出直線AB解析式,設(shè)出點P坐標(biāo)(x,﹣x2+4x+5),建立PD的函數(shù)關(guān)系式,即可求解;
(3)方法1、先判斷出△HMN≌△AOE,求出M點的橫坐標(biāo),從而求出點M,N的坐標(biāo).
方法2、四邊形AENM是平行四邊形時,由于知道點E和點N的橫坐標(biāo),進而得出點E平移到點N時,先向右平移3單位,進而判斷出點A到點M向右先平移3個單位,求出點M的橫坐標(biāo),代入拋物線解析式,即可求出點M坐標(biāo),判斷出點A再向上平移3個單位得出點M,即可求出點N坐標(biāo);四邊形AEMN是平行四邊形時,同上方法即可得出結(jié)論
解:(1)設(shè)拋物線解析式為y=a(x﹣2)2+9,
∵拋物線與y軸交于點A(0,5),
∴4a+9=5,
∴a=﹣1,
y=﹣(x﹣2)2+9=﹣x2+4x+5,
(2)當(dāng)y=0時,﹣x2+4x+5=0,
∴x1=﹣1,x2=5,
∴E(﹣1,0),B(5,0),
設(shè)直線AB的解析式為y=mx+n,
∵A(0,5),B(5,0),
∴m=﹣1,n=5,
∴直線AB的解析式為y=﹣x+5;
設(shè)P(x,﹣x2+4x+5),
∴D(x,﹣x+5),
∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,
x=時,PD的最大值為:;
(3)方法1、如圖,
過M作MH垂直于對稱軸,垂足為H,
∵MN∥AE,MN=AE,
∴△HMN≌△AOE,
∴HM=OE=1,
∴M點的橫坐標(biāo)為x=3或x=1,
當(dāng)x=1時,M點縱坐標(biāo)為8,
當(dāng)x=3時,M點縱坐標(biāo)為8,
∴M點的坐標(biāo)為M1(1,8)或M2(3,8),
∵A(0,5),E(﹣1,0),
∴直線AE解析式為y=5x+5,
∵MN∥AE,
∴MN的解析式為y=5x+b,
∵點N在拋物線對稱軸x=2上,
∴N(2,10+b),
∵AE2=OA2+OE2=26
∵MN=AE
∴MN2=AE2,
∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2
∵M點的坐標(biāo)為M1(1,8)或M2(3,8),
∴點M1,M2關(guān)于拋物線對稱軸x=2對稱,
∵點N在拋物線對稱軸上,
∴M1N=M2N,
∴1+(b+2)2=26,
∴b=3,或b=﹣7,
∴10+b=13或10+b=3
∴當(dāng)M點的坐標(biāo)為(1,8)時,N點坐標(biāo)為(2,13),
當(dāng)M點的坐標(biāo)為(3,8)時,N點坐標(biāo)為(2,3).
方法2,如圖2,
∴E(﹣1,0),A(0,5),
∵拋物線的解析式為y=﹣(x﹣2)2+9,
∴拋物線的對稱軸為直線x=2,
∴點N的橫坐標(biāo)為2,即:N'(2,0)
①當(dāng)以點A,E,M,N組成的平行四邊形為四邊形AENM時,
∵E(﹣1,0),點N的橫坐標(biāo)為2,(N'(2,0)
∴點E到點N向右平移2﹣(﹣1)=3個單位,
∵四邊形AENM是平行四邊形,
∴點A向右也平移3個單位,
∵A(0,5),
∴M點的橫坐標(biāo)為3,即:M'(3,5),
∵點M在拋物線上,
∴點M的縱坐標(biāo)為﹣(3﹣2)2+9=8,
∴M(3,8),即:點A再向上平移(8﹣5=3)個單位,
∴點N'再向上平移3個單位,得到點N(2,3),
即:當(dāng)M點的坐標(biāo)為(3,8)時,N點坐標(biāo)為(2,3).
②當(dāng)以點A,E,M,N組成的平行四邊形為四邊形AEMN時,
同①的方法得出,當(dāng)M點的坐標(biāo)為(1,8)時,N點坐標(biāo)為(2,13);
綜上,點M(3,8)或(1,8).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,在邊長為8的等邊三角形ABC中,點D,E分別在BC與AC上,且BD=2,∠ADE=60°,則線段CE的長為 .
問題
(2)如圖②,已知AP∥BQ,∠A=∠B=90°,AB=6,D是射線AP上的一個動點(不與點A重合),E是線段AB上的一個動點(不與A,B重合),EC⊥DE,交射線BQ于點C,且AD+DE=AB,求△BCE的周長.
問題解決:
(3)如圖③,在四邊形ABCD中,AB+CD=10(AB<CD),BC=6,點E為BC的中點,且∠AED=108°,則邊AD的長是否存在最大值?若存在,請求AD的最大值,并求出此時AB,CD的長度,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某政府工作報告中強調(diào),2019年著重推進鄉(xiāng)村振興戰(zhàn)略,做優(yōu)做響湘蓮等特色農(nóng)產(chǎn)品品牌.小亮調(diào)查了一家湘潭特產(chǎn)店兩種湘蓮禮盒一個月的銷售情況,A種湘蓮禮盒進價72元/盒,售價120元/盒,B種湘蓮禮盒進價40元/盒,售價80元/盒,這兩種湘蓮禮盒這個月平均每天的銷售總額為2800元,平均每天的總利潤為1280元.
(1)求該店平均每天銷售這兩種湘蓮禮盒各多少盒?
(2)小亮調(diào)査發(fā)現(xiàn),種湘蓮禮盒售價每降3元可多賣1盒.若種湘蓮禮盒的售價和銷量不變,當(dāng)種湘蓮禮盒降價多少元/盒時,這兩種湘蓮禮盒平均每天的總利潤最大,最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,△ABC三個頂點的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(記過保留根號和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某科技物展覽大廳有A、B兩個入口,C、D、E三個出口.小昀任選一個入口進入展覽大廳, 參觀結(jié)束后任選一個出口離開.
(1)若小昀已進入展覽大廳,求他選擇從出口C離開的概率.
(2)求小昀選擇從入口A進入,從出口E離開的概率.(請用列表或畫樹狀圖求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實數(shù)k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com