【題目】碼頭工人每天往一艘輪船上裝載貨物,平均每天裝載速度y(噸/元)與裝完貨物所需時間x(天)之間是反比例函數(shù)關系,其圖象如圖所示.

(1)求這個反比例函數(shù)的表達式;

(2)由于緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸貨多少噸?

(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務?

【答案】(1);(2) 80噸貨物;(3)6.

【解析】

(1)根據題意即可知裝載速度y(噸/天)與裝完貨物所需時間x(天)之間是反比例函數(shù)關系,則可求得答案;
(2)由x=5,代入函數(shù)解析式即可求得y的值,即求得平均每天至少要卸的貨物;
(3)由10名工人,每天一共可卸貨50噸,即可得出平均每人卸貨的噸數(shù),即可求得答案.

解:(1)設yx之間的函數(shù)表達式為y=,

根據題意得:50=,

解得k=400

yx之間的函數(shù)表達式為y=

2)∵x=5,∴y=400÷5=80,

解得:y=80;

答:平均每天至少要卸80噸貨物;

3)∵每人一天可卸貨:50÷10=5(噸),

80÷5=16(人),1610=6(人).

答:碼頭至少需要再增加6名工人才能按時完成任務.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AD是角平分錢,點E在AC上,且EAD=ADE.

1求證:DCE∽△BCA;

2若AB=3,AC=4.求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形中,,分別是、邊上的點,交于點

1)如圖1,若四邊形是正方形,且,求證:;

2)如圖2,若四邊形是菱形,試探究當滿足什么關系,使得;

3)如圖3,,試判斷的數(shù)量關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寧波某公司經銷一種綠茶,每千克成本為元.市場調查發(fā)現(xiàn),在一段時間內,銷售量(千克)隨銷售單價(元/千克)的變化而變化,具體關系式為:.設這種綠茶在這段時間內的銷售利潤為(元),解答下列問題:

(1)求的關系式;

(2)當銷售單價取何值時,銷售利潤的值最大,最大值為多少?

(3)如果物價部門規(guī)定這種綠茶的銷售單價不得高于元/千克,公司想要在這段時間內獲得元的銷售利潤,銷售單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】5個同樣大小的正方形紙片擺放成“十”字型,按圖1所示的方法分割后可拼接成一個新的正方形.按照此種做法解決下列問題:

15個同樣大小的矩形紙片擺放成圖2形式,請將其分割并拼接成一個平行四邊形.要求:在圖2中畫出并指明拼接成的平行四邊形(畫出一個符合條件的平行四邊形即可);

2)如圖3,在面積為1的平行四邊形中,點分別是邊的中點,分別連結得到一個新的平四邊形.則平行四邊形的面積為___________(在圖3中畫圖說明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形中,的垂直平分線分別交于點,垂足為

1)如圖1,連接,求證:四邊形為菱形;

2)如圖2,動點分別從兩點同時出發(fā),沿各邊勻速運動一周,即點停止,點停止.在運動過程中,

①已知點的速度為每秒,點的速度為每秒,運動時間為秒,當四點為頂點的四邊形是平行四邊形時,則____________

②若點的運動路程分別為 (單位:),已知四點為頂點的四邊形是平行四邊形,則滿足的數(shù)量關系式為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:在中,,點的中點,以為角的頂點作

感知易證:(1)如圖1,當射線經過點時,交邊于點.從圖1中的位置開始,繞點按逆時針方向旋轉,使射線、始終分別交邊于點、,如圖2所示,易證,則有

操作探究:(2)如圖2是否相似,若相似,請證明;若不相似,請說明理由;

拓展應用:(3)若,直接寫出當(2)中的旋轉角為多少度時,相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C,EO上的兩點,若AC平分∠EABCDAE于點D

(1)求證:DC是⊙O切線;

(2)若AO=6,DC=3,求DE的長;

(3)過點CCFABF,如圖2,若ADOA=1.5,AC=3,求圖中陰影部分面積.

查看答案和解析>>

同步練習冊答案