【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.

(1)求證:BD=CE;
(2)求證:∠M=∠N.

【答案】
(1)

證明:在△ABD和△ACE中,

∴△ABD≌△ACE(SAS),

∴BD=CE;


(2)

證明:∵∠1=∠2,

∴∠1+∠DAE=∠2+∠DAE,

即∠BAN=∠CAM,

由(1)得:△ABD≌△ACE,

∴∠B=∠C,

在△ACM和△ABN中,

∴△ACM≌△ABN(ASA),

∴∠M=∠N.


【解析】(1)由SAS證明△ABD≌△ACE,得出對(duì)應(yīng)邊相等即可(2)證出∠BAN=∠CAM,由全等三角形的性質(zhì)得出∠B=∠C,由AAS證明△ACM≌△ABN,得出對(duì)應(yīng)角相等即可.本題考查了全等三角形的判定與性質(zhì);證明三角形全等是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某養(yǎng)殖場(chǎng)計(jì)劃購(gòu)買甲、乙兩種魚苗共700尾,甲種魚苗每尾3元,乙種魚苗每尾5元,相關(guān)資料表明:甲、乙兩種魚苗的成活率分別為85%和90%
(1)若購(gòu)買這兩種魚苗共用去2500元,則甲、乙兩種魚苗各購(gòu)買多少尾?
(2)若要使這批魚苗的總成活率不低于88%,則甲種魚苗至多購(gòu)買多少尾?
(3)設(shè)甲種魚苗購(gòu)買m尾,購(gòu)買魚苗的費(fèi)用為w元,列出w與x之間的函數(shù)關(guān)系式,運(yùn)用一次函數(shù)的性質(zhì)解決問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.

(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)經(jīng)過(guò)B,C兩點(diǎn)的直線交拋物線的對(duì)稱軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PCD的面積最大時(shí),Q從點(diǎn)P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到拋物線的對(duì)稱軸上點(diǎn)M處,再沿垂直于拋物線對(duì)稱軸的方向運(yùn)動(dòng)到y(tǒng)軸上的點(diǎn)N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)A處停止.當(dāng)點(diǎn)Q的運(yùn)動(dòng)路徑最短時(shí),求點(diǎn)N的坐標(biāo)及點(diǎn)Q經(jīng)過(guò)的最短路徑的長(zhǎng);
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)E在射線AE上移動(dòng),點(diǎn)E平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)E′,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,將△AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至△A1OC1的位置,點(diǎn)A,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1 , C1 , 且點(diǎn)A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)E′的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),F(xiàn)為DE的中點(diǎn),且∠BFC=90°.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:△BCF≌△DEC;
(2)當(dāng)BE=2EC時(shí),求 的值;
(3)設(shè)CE=1,BE=n,作點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)C′,連結(jié)FC′,AF,若點(diǎn)C′到AF的距離是 ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)折矩形紙片ABCD,使AB與DC重合得到折痕EF,將紙片展平;再一次折疊,使點(diǎn)D落到EF上點(diǎn)G處,并使折痕經(jīng)過(guò)點(diǎn)A,展平紙片后∠DAG的大小為( 。

A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)P為正方形內(nèi)一動(dòng)點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長(zhǎng)BP交AD于點(diǎn)N,連結(jié)CM.

(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動(dòng)過(guò)程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長(zhǎng)線上時(shí),AP⊥BN和AM=AN是否成立?(不需說(shuō)明理由)
②是否存在滿足條件的點(diǎn)P,使得PC= ?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)a,n,m,b滿足a<n<m<b,這四個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)分別為A,N,M,B(如圖),若AM2=BMAB,BN2=ANAB,則稱m為a,b的“大黃金數(shù)”,n為a,b的“小黃金數(shù)”,當(dāng)b﹣a=2時(shí),a,b的大黃金數(shù)與小黃金數(shù)之差m﹣n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格中,每個(gè)小正方形的邊長(zhǎng)都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖.

(1)畫出將△ABC向右平移2個(gè)單位得到△A1B1C1;
(2)畫出將△ABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2;
(3)求△A1B1C1與△A2B2C2重合部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過(guò)點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線OC下方的動(dòng)點(diǎn),過(guò)點(diǎn)T作直線TM⊥OC,垂足為點(diǎn)M,且M在線段OC上(不與O、C重合),過(guò)點(diǎn)T作直線TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過(guò)程中, 為常數(shù),試確定k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案